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Mathematical Methods for Physics and Engineering

The third edition of this highly acclaimed undergraduate textbook is suitable
for teaching all the mathematics ever likely to be needed for an undergraduate
course in any of the physical sciences. As well as lucid descriptions of all the
topics covered and many worked examples, it contains more than 800 exercises.
A number of additional topics have been included and the text has undergone
significant reorganisation in some areas. New stand-alone chapters:

e give a systematic account of the ‘special functions’ of physical science

e cover an extended range of practical applications of complex variables including
WKB methods and saddle-point integration techniques

e provide an introduction to quantum operators.

Further tabulations, of relevance in statistics and numerical integration, have
been added. In this edition, all 400 odd-numbered exercises are provided with
complete worked solutions in a separate manual, available to both students and
their teachers; these are in addition to the hints and outline answers given in
the main text. The even-numbered exercises have no hints, answers or worked
solutions and can be used for unaided homework; full solutions to them are
available to instructors on a password-protected website.

KEN RILEY read mathematics at the University of Cambridge and proceeded
to a Ph.D. there in theoretical and experimental nuclear physics. He became a
research associate in elementary particle physics at Brookhaven, and then, having
taken up a lectureship at the Cavendish Laboratory, Cambridge, continued this
research at the Rutherford Laboratory and Stanford; in particular he was involved
in the experimental discovery of a number of the early baryonic resonances. As
well as having been Senior Tutor at Clare College, where he has taught physics
and mathematics for over 40 years, he has served on many committees concerned
with the teaching and examining of these subjects at all levels of tertiary and
undergraduate education. He is also one of the authors of 200 Puzzling Physics
Problems.

MicHAEL HoOBSON read natural sciences at the University of Cambridge, spe-
cialising in theoretical physics, and remained at the Cavendish Laboratory to
complete a Ph.D. in the physics of star-formation. As a research fellow at Trinity
Hall, Cambridge and subsequently an advanced fellow of the Particle Physics
and Astronomy Research Council, he developed an interest in cosmology, and
in particular in the study of fluctuations in the cosmic microwave background.
He was involved in the first detection of these fluctuations using a ground-based
interferometer. He is currently a University Reader at the Cavendish Laboratory,
his research interests include both theoretical and observational aspects of cos-
mology, and he is the principal author of General Relativity: An Introduction for



Physicists. He is also a Director of Studies in Natural Sciences at Trinity Hall and
enjoys an active role in the teaching of undergraduate physics and mathematics.

STEPHEN BENCE obtained both his undergraduate degree in Natural Sciences
and his Ph.D. in Astrophysics from the University of Cambridge. He then became
a Research Associate with a special interest in star-formation processes and the
structure of star-forming regions. In particular, his research concentrated on the
physics of jets and outflows from young stars. He has had considerable experi-
ence of teaching mathematics and physics to undergraduate and pre-universtiy
students.
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I am the very Model for a Student Mathematical

I am the very model for a student mathematical;

I've information rational, and logical and practical.

I know the laws of algebra, and find them quite symmetrical,
And even know the meaning of ‘a variate antithetical’.

I'm extremely well acquainted, with all things mathematical.

I understand equations, both the simple and quadratical.
About binomial theorems I’'m teeming with a lot o’news,
With many cheerful facts about the square of the hypotenuse.

I'm very good at integral and differential calculus,
And solving paradoxes that so often seem to rankle us.
In short in matters rational, and logical and practical,
I am the very model for a student mathematical.

I know the singularities of equations differential,

And some of these are regular, but the rest are quite essential.

I quote the results of giants; with Euler, Newton, Gauss, Laplace,
And can calculate an orbit, given a centre, force and mass.

I can reconstruct equations, both canonical and formal,
And write all kinds of matrices, orthogonal, real and normal.
I show how to tackle problems that one has never met before,
By analogy or example, or with some clever metaphor.

I seldom use equivalence to help decide upon a class,
But often find an integral, using a contour o’er a pass.
In short in matters rational, and logical and practical,
I am the very model for a student mathematical.

When you have learnt just what is meant by ‘Jacobian’ and ‘Abelian’;
When you at sight can estimate, for the modal, mean and median;
When describing normal subgroups is much more than recitation;
When you understand precisely what is ‘quantum excitation’;

When you know enough statistics that you can recognise RV
When you have learnt all advances that have been made in SVD;
And when you can spot the transform that solves some tricky PDE,
You will feel no better student has ever sat for a degree.

Your accumulated knowledge, whilst extensive and exemplary,

Will have only been brought down to the beginning of last century,
But still in matters rational, and logical and practical,

You’ll be the very model of a student mathematical.

KFR, with apologies to W.S. Gilbert
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Preface to the third edition

As is natural, in the four years since the publication of the second edition of
this book we have somewhat modified our views on what should be included
and how it should be presented. In this new edition, although the range of topics
covered has been extended, there has been no significant shift in the general level
of difficulty or in the degree of mathematical sophistication required. Further, we
have aimed to preserve the same style of presentation as seems to have been well
received in the first two editions. However, a significant change has been made
to the format of the chapters, specifically to the way that the exercises, together
with their hints and answers, have been treated; the details of the change are
explained below.

The two major chapters that are new in this third edition are those dealing with
‘special functions’ and the applications of complex variables. The former presents
a systematic account of those functions that appear to have arisen in a more
or less haphazard way as a result of studying particular physical situations, and
are deemed ‘special’ for that reason. The treatment presented here shows that,
in fact, they are nearly all particular cases of the hypergeometric or confluent
hypergeometric functions, and are special only in the sense that the parameters
of the relevant function take simple or related values.

The second new chapter describes how the properties of complex variables can
be used to tackle problems arising from the description of physical situations
or from other seemingly unrelated areas of mathematics. To topics treated in
earlier editions, such as the solution of Laplace’s equation in two dimensions, the
summation of series, the location of zeros of polynomials and the calculation of
inverse Laplace transforms, has been added new material covering Airy integrals,
saddle-point methods for contour integral evaluation, and the WKB approach to
asymptotic forms.

Other new material includes a stand-alone chapter on the use of coordinate-free
operators to establish valuable results in the field of quantum mechanics; amongst

XX



PREFACE TO THE THIRD EDITION

the physical topics covered are angular momentum and uncertainty principles.
There are also significant additions to the treatment of numerical integration.
In particular, Gaussian quadrature based on Legendre, Laguerre, Hermite and
Chebyshev polynomials is discussed, and appropriate tables of points and weights
are provided.

We now turn to the most obvious change to the format of the book, namely
the way that the exercises, hints and answers are treated. The second edition of
Mathematical Methods for Physics and Engineering carried more than twice as
many exercises, based on its various chapters, as did the first. In its preface we
discussed the general question of how such exercises should be treated but, in
the end, decided to provide hints and outline answers to all problems, as in the
first edition. This decision was an uneasy one as, on the one hand, it did not
allow the exercises to be set as totally unaided homework that could be used for
assessment purposes but, on the other, it did not give a full explanation of how
to tackle a problem when a student needed explicit guidance or a model answer.

In order to allow both of these educationally desirable goals to be achieved,
we have, in this third edition, completely changed the way in which this matter
is handled. A large number of exercises have been included in the penultimate
subsections of the appropriate, sometimes reorganised, chapters. Hints and outline
answers are given, as previously, in the final subsections, but only for the odd-
numbered exercises. This leaves all even-numbered exercises free to be set as
unaided homework, as described below.

For the four hundred plus odd-numbered exercises, complete solutions are
available, to both students and their teachers, in the form of a separate manual,
Student Solutions Manual for Mathematical Methods for Physics and Engineering
(Cambridge: Cambridge University Press, 2006); the hints and outline answers
given in this main text are brief summaries of the model answers given in the
manual. There, each original exercise is reproduced and followed by a fully
worked solution. For those original exercises that make internal reference to this
text or to other (even-numbered) exercises not included in the solutions manual,
the questions have been reworded, usually by including additional information,
so that the questions can stand alone.

In many cases, the solution given in the manual is even fuller than one that
might be expected of a good student that has understood the material. This is
because we have aimed to make the solutions instructional as well as utilitarian.
To this end, we have included comments that are intended to show how the
plan for the solution is fomulated and have given the justifications for particular
intermediate steps (something not always done, even by the best of students). We
have also tried to write each individual substituted formula in the form that best
indicates how it was obtained, before simplifying it at the next or a subsequent
stage. Where several lines of algebraic manipulation or calculus are needed to
obtain a final result, they are normally included in full; this should enable the
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student to determine whether an incorrect answer is due to a misunderstanding
of principles or to a technical error.

The remaining four hundred or so even-numbered exercises have no hints or
answers, outlined or detailed, available for general access. They can therefore be
used by instructors as a basis for setting unaided homework. Full solutions to
these exercises, in the same general format as those appearing in the manual
(though they may contain references to the main text or to other exercises), are
available without charge to accredited teachers as downloadable pdf files on the
password-protected website http://www.cambridge.org/9780521679718. Teachers
wishing to have access to the website should contact solutions@cambridge.org
for registration details.

In all new publications, errors and typographical mistakes are virtually un-
avoidable, and we would be grateful to any reader who brings instances to
our attention. Retrospectively, we would like to record our thanks to Reinhard
Gerndt, Paul Renteln and Joe Tenn for making us aware of some errors in
the second edition. Finally, we are extremely grateful to Dave Green for his
considerable and continuing advice concerning IXTEX.

Ken Riley, Michael Hobson,
Cambridge, 2006
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Preface to the second edition

Since the publication of the first edition of this book, both through teaching the
material it covers and as a result of receiving helpful comments from colleagues,
we have become aware of the desirability of changes in a number of areas.
The most important of these is that the mathematical preparation of current
senior college and university entrants is now less thorough than it used to be.
To match this, we decided to include a preliminary chapter covering areas such
as polynomial equations, trigonometric identities, coordinate geometry, partial
fractions, binomial expansions, necessary and sufficient condition and proof by
induction and contradiction.

Whilst the general level of what is included in this second edition has not
been raised, some areas have been expanded to take in topics we now feel were
not adequately covered in the first. In particular, increased attention has been
given to non-square sets of simultaneous linear equations and their associated
matrices. We hope that this more extended treatment, together with the inclusion
of singular value matrix decomposition, will make the material of more practical
use to engineering students. In the same spirit, an elementary treatment of linear
recurrence relations has been included. The topic of normal modes has been given
a small chapter of its own, though the links to matrices on the one hand, and to
representation theory on the other, have not been lost.

Elsewhere, the presentation of probability and statistics has been reorganised to
give the two aspects more nearly equal weights. The early part of the probability
chapter has been rewritten in order to present a more coherent development
based on Boolean algebra, the fundamental axioms of probability theory and
the properties of intersections and unions. Whilst this is somewhat more formal
than previously, we think that it has not reduced the accessibility of these topics
and hope that it has increased it. The scope of the chapter has been somewhat
extended to include all physically important distributions and an introduction to
cumulants.

Xxiii
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Statistics now occupies a substantial chapter of its own, one that includes sys-
tematic discussions of estimators and their efficiency, sample distributions and t-
and F-tests for comparing means and variances. Other new topics are applications
of the chi-squared distribution, maximum-likelihood parameter estimation and
least-squares fitting. In other chapters we have added material on the following
topics: curvature, envelopes, curve-sketching, more refined numerical methods
for differential equations and the elements of integration using Monte Carlo
techniques.

Over the last four years we have received somewhat mixed feedback about
the number of exercises at the ends of the various chapters. After consideration,
we decided to increase the number substantially, partly to correspond to the
additional topics covered in the text but mainly to give both students and
their teachers a wider choice. There are now nearly 800 such exercises, many with
several parts. An even more vexed question has been whether to provide hints and
answers to all the exercises or just to ‘the odd-numbered’ ones, as is the normal
practice for textbooks in the United States, thus making the remainder more
suitable for setting as homework. In the end, we decided that hints and outline
solutions should be provided for all the exercises, in order to facilitate independent
study while leaving the details of the calculation as a task for the student.

In conclusion, we hope that this edition will be thought by its users to be
‘heading in the right direction” and would like to place on record our thanks to
all who have helped to bring about the changes and adjustments. Naturally, those
colleagues who have noted errors or ambiguities in the first edition and brought
them to our attention figure high on the list, as do the staff at The Cambridge
University Press. In particular, we are grateful to Dave Green for continued ETEX
advice, Susan Parkinson for copy-editing the second edition with her usual keen
eye for detail and flair for crafting coherent prose and Alison Woollatt for once
again turning our basic I4TEX into a beautifully typeset book. Our thanks go
to all of them, though of course we accept full responsibility for any remaining
errors or ambiguities, of which, as with any new publication, there are bound to
be some.

On a more personal note, KFR again wishes to thank his wife Penny for her
unwavering support, not only in his academic and tutorial work, but also in their
joint efforts to convert time at the bridge table into ‘green points’ on their record.
MPH is once more indebted to his wife, Becky, and his mother, Pat, for their
tireless support and encouragement above and beyond the call of duty. MPH
dedicates his contribution to this book to the memory of his father, Ronald
Leonard Hobson, whose gentle kindness, patient understanding and unbreakable
spirit made all things seem possible.

Ken Riley, Michael Hobson
Cambridge, 2002
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Preface to the first edition

A knowledge of mathematical methods is important for an increasing number of
university and college courses, particularly in physics, engineering and chemistry,
but also in more general science. Students embarking on such courses come from
diverse mathematical backgrounds, and their core knowledge varies considerably.
We have therefore decided to write a textbook that assumes knowledge only of
material that can be expected to be familiar to all the current generation of
students starting physical science courses at university. In the United Kingdom
this corresponds to the standard of Mathematics A-level, whereas in the United
States the material assumed is that which would normally be covered at junior
college.

Starting from this level, the first six chapters cover a collection of topics
with which the reader may already be familiar, but which are here extended
and applied to typical problems encountered by first-year university students.
They are aimed at providing a common base of general techniques used in
the development of the remaining chapters. Students who have had additional
preparation, such as Further Mathematics at A-level, will find much of this
material straightforward.

Following these opening chapters, the remainder of the book is intended to
cover at least that mathematical material which an undergraduate in the physical
sciences might encounter up to the end of his or her course. The book is also
appropriate for those beginning graduate study with a mathematical content, and
naturally much of the material forms parts of courses for mathematics students.
Furthermore, the text should provide a useful reference for research workers.

The general aim of the book is to present a topic in three stages. The first
stage is a qualitative introduction, wherever possible from a physical point of
view. The second is a more formal presentation, although we have deliberately
avoided strictly mathematical questions such as the existence of limits, uniform
convergence, the interchanging of integration and summation orders, etc. on the
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grounds that ‘this is the real world; it must behave reasonably’. Finally a worked
example is presented, often drawn from familiar situations in physical science
and engineering. These examples have generally been fully worked, since, in
the authors’ experience, partially worked examples are unpopular with students.
Only in a few cases, where trivial algebraic manipulation is involved, or where
repetition of the main text would result, has an example been left as an exercise
for the reader. Nevertheless, a number of exercises also appear at the end of each
chapter, and these should give the reader ample opportunity to test his or her
understanding. Hints and answers to these exercises are also provided.

With regard to the presentation of the mathematics, it has to be accepted that
many equations (especially partial differential equations) can be written more
compactly by using subscripts, e.g. uy, for a second partial derivative, instead of
the more familiar 9°u/0xdy, and that this certainly saves typographical space.
However, for many students, the labour of mentally unpacking such equations
is sufficiently great that it is not possible to think of an equation’s physical
interpretation at the same time. Consequently, wherever possible we have decided
to write out such expressions in their more obvious but longer form.

During the writing of this book we have received much help and encouragement
from various colleagues at the Cavendish Laboratory, Clare College, Trinity Hall
and Peterhouse. In particular, we would like to thank Peter Scheuer, whose
comments and general enthusiasm proved invaluable in the early stages. For
reading sections of the manuscript, for pointing out misprints and for numerous
useful comments, we thank many of our students and colleagues at the University
of Cambridge. We are especially grateful to Chris Doran, John Huber, Garth
Leder, Tom Korner and, not least, Mike Stobbs, who, sadly, died before the book
was completed. We also extend our thanks to the University of Cambridge and
the Cavendish teaching staff, whose examination questions and lecture hand-outs
have collectively provided the basis for some of the examples included. Of course,
any errors and ambiguities remaining are entirely the responsibility of the authors,
and we would be most grateful to have them brought to our attention.

We are indebted to Dave Green for a great deal of advice concerning typesetting
in ATEX and to Andrew Lovatt for various other computing tips. Our thanks
also go to Anja Visser and Graca Rocha for enduring many hours of (sometimes
heated) debate. At Cambridge University Press, we are very grateful to our editor
Adam Black for his help and patience and to Alison Woollatt for her expert
typesetting of such a complicated text. We also thank our copy-editor Susan
Parkinson for many useful suggestions that have undoubtedly improved the style
of the book.

Finally, on a personal note, KFR wishes to thank his wife Penny, not only for
a long and happy marriage, but also for her support and understanding during
his recent illness — and when things have not gone too well at the bridge table!
MPH is indebted both to Rebecca Morris and to his parents for their tireless
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support and patience, and for their unending supplies of tea. SJB is grateful to
Anthony Gritten for numerous relaxing discussions about J. S. Bach, to Susannah
Ticciati for her patience and understanding, and to Kate Isaak for her calming
late-night e-mails from the USA.

Ken Riley, Michael Hobson and Stephen Bence
Cambridge, 1997
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Preliminary algebra

This opening chapter reviews the basic algebra of which a working knowledge is
presumed in the rest of the book. Many students will be familiar with much, if
not all, of it, but recent changes in what is studied during secondary education
mean that it cannot be taken for granted that they will already have a mastery
of all the topics presented here. The reader may assess which areas need further
study or revision by attempting the exercises at the end of the chapter. The main
areas covered are polynomial equations and the related topic of partial fractions,
curve sketching, coordinate geometry, trigonometric identities and the notions of
proof by induction or contradiction.

1.1 Simple functions and equations

It is normal practice when starting the mathematical investigation of a physical
problem to assign an algebraic symbol to the quantity whose value is sought, either
numerically or as an explicit algebraic expression. For the sake of definiteness, in
this chapter we will use x to denote this quantity most of the time. Subsequent
steps in the analysis involve applying a combination of known laws, consistency
conditions and (possibly) given constraints to derive one or more equations
satisfied by x. These equations may take many forms, ranging from a simple
polynomial equation to, say, a partial differential equation with several boundary
conditions. Some of the more complicated possibilities are treated in the later
chapters of this book, but for the present we will be concerned with techniques
for the solution of relatively straightforward algebraic equations.

1.1.1 Polynomials and polynomial equations

Firstly we consider the simplest type of equation, a polynomial equation, in which
a polynomial expression in x, denoted by f(x), is set equal to zero and thereby
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forms an equation which is satisfied by particular values of x, called the roots of
the equation:

f(x) = apx" + ap1x"' 4+ +ajx +ap = 0. (1.1)

Here n is an integer > 0, called the degree of both the polynomial and the
equation, and the known coefficients ag, ay, ..., a, are real quantities with a, # 0.

Equations such as (1.1) arise frequently in physical problems, the coefficients g;
being determined by the physical properties of the system under study. What is
needed is to find some or all of the roots of (1.1), i.e. the x-values, oy, that satisfy
f(ax) = 0; here k is an index that, as we shall see later, can take up to n different
values, i.e. k = 1,2,...,n. The roots of the polynomial equation can equally well
be described as the zeros of the polynomial. When they are real, they correspond
to the points at which a graph of f(x) crosses the x-axis. Roots that are complex
(see chapter 3) do not have such a graphical interpretation.

For polynomial equations containing powers of x greater than x* general
methods do not exist for obtaining explicit expressions for the roots o;. Even
for n = 3 and n = 4 the prescriptions for obtaining the roots are sufficiently
complicated that it is usually preferable to obtain exact or approximate values
by other methods. Only for n = 1 and n = 2 can closed-form solutions be given.
These results will be well known to the reader, but they are given here for the
sake of completeness. For n = 1, (1.1) reduces to the linear equation

aix +ag=0; (1.2)
the solution (root) is oy = —ag/a;. For n = 2, (1.1) reduces to the quadratic
equation

arx* +ajx +ag = 0; (1.3)

the two roots o; and o, are given by

—a; +\/a® — dazay
' . (1.4)

2(12

d12 =

When discussing specifically quadratic equations, as opposed to more general
polynomial equations, it is usual to write the equation in one of the two notations

ax’> +bx+c¢=0, ax> +2bx +c¢ =0, (1.5)

with respective explicit pairs of solutions
—b + \/b* —4ac
2a ’

Of course, these two notations are entirely equivalent and the only important
point is to associate each form of answer with the corresponding form of equation;
most people keep to one form, to avoid any possible confusion.

—b + Jb? —ac (1.6)
EE— )

%12 = %2 =

2
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If the value of the quantity appearing under the square root sign is positive
then both roots are real; if it is negative then the roots form a complex conjugate
pair, i.e. they are of the form p + ig with p and g real (see chapter 3); if it has
zero value then the two roots are equal and special considerations usually arise.

Thus linear and quadratic equations can be dealt with in a cut-and-dried way.
We now turn to methods for obtaining partial information about the roots of
higher-degree polynomial equations. In some circumstances the knowledge that
an equation has a root lying in a certain range, or that it has no real roots at all,
is all that is actually required. For example, in the design of electronic circuits
it is necessary to know whether the current in a proposed circuit will break
into spontaneous oscillation. To test this, it is sufficient to establish whether a
certain polynomial equation, whose coefficients are determined by the physical
parameters of the circuit, has a root with a positive real part (see chapter 3);
complete determination of all the roots is not needed for this purpose. If the
complete set of roots of a polynomial equation is required, it can usually be
obtained to any desired accuracy by numerical methods such as those described
in chapter 27.

There is no explicit step-by-step approach to finding the roots of a general
polynomial equation such as (1.1). In most cases analytic methods yield only
information about the roots, rather than their exact values. To explain the relevant
techniques we will consider a particular example, ‘thinking aloud’ on paper and
expanding on special points about methods and lines of reasoning. In more
routine situations such comment would be absent and the whole process briefer
and more tightly focussed.

Example: the cubic case

Let us investigate the roots of the equation
g(x)=4x+3x>—6x—1=0 1.7)

or, in an alternative phrasing, investigate the zeros of g(x). We note first of all
that this is a cubic equation. It can be seen that for x large and positive g(x)
will be large and positive and, equally, that for x large and negative g(x) will
be large and negative. Therefore, intuitively (or, more formally, by continuity)
g(x) must cross the x-axis at least once and so g(x) = 0 must have at least one
real root. Furthermore, it can be shown that if f(x) is an nth-degree polynomial
then the graph of f(x) must cross the x-axis an even or odd number of times
as x varies between —oo and +oo, according to whether n itself is even or odd.
Thus a polynomial of odd degree always has at least one real root, but one of
even degree may have no real root. A small complication, discussed later in this
section, occurs when repeated roots arise.

Having established that g(x) = 0 has at least one real root, we may ask how
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many real roots it could have. To answer this we need one of the fundamental
theorems of algebra, mentioned above:

An nth-degree polynomial equation has exactly n roots.

It should be noted that this does not imply that there are n real roots (only that
there are not more than n); some of the roots may be of the form p + iq.

To make the above theorem plausible and to see what is meant by repeated
roots, let us suppose that the nth-degree polynomial equation f(x) = 0, (1.1), has
I TOOts oy, d, ..., 0, considered distinct for the moment. That is, we suppose that
flax) =0 for k =1,2,...,r, so that f(x) vanishes only when x is equal to one of
the r values o. But the same can be said for the function

F(x) = A(x —a)(x — o) -+ (X — ), (1.8)

in which A4 is a non-zero constant; F(x) can clearly be multiplied out to form a
polynomial expression.

We now call upon a second fundamental result in algebra: that if two poly-
nomial functions f(x) and F(x) have equal values for all values of x, then their
coefficients are equal on a term-by-term basis. In other words, we can equate
the coeflicients of each and every power of x in the two expressions (1.8) and
(1.1); in particular we can equate the coefficients of the highest power of x. From
this we have Ax" = a,x" and thus that »r = n and 4 = a,. As r is both equal
to n and to the number of roots of f(x) = 0, we conclude that the nth-degree
polynomial f(x) = 0 has n roots. (Although this line of reasoning may make the
theorem plausible, it does not constitute a proof since we have not shown that it
is permissible to write f(x) in the form of equation (1.8).)

We next note that the condition f(o) =0 for k = 1,2,...,r, could also be met
if (1.8) were replaced by

F(x) = A(x —o)™(x — o)™+ - (x — o)™, (1.9)

with 4 = a,. In (1.9) the my, are integers > 1 and are known as the multiplicities
of the roots, my being the multiplicity of o). Expanding the right-hand side (RHS)
leads to a polynomial of degree m; +my + - - - + m,. This sum must be equal to n.
Thus, if any of the my, is greater than unity then the number of distinct roots, r,
is less than n; the total number of roots remains at n, but one or more of the oy
counts more than once. For example, the equation

F(x) = A(x — a1)*(x — 02)’ (x —03)(x —otg) = 0
has exactly seven roots, oy being a double root and «; a triple root, whilst 3 and
oy are unrepeated (simple) roots.
We can now say that our particular equation (1.7) has either one or three real

roots but in the latter case it may be that not all the roots are distinct. To decide
how many real roots the equation has, we need to anticipate two ideas from the

4
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$1(x) $a(x)

Figure 1.1 Two curves ¢;(x) and ¢,(x), both with zero derivatives at the
same values of x, but with different numbers of real solutions to ¢;(x) = 0.

next chapter. The first of these is the notion of the derivative of a function, and
the second is a result known as Rolle’s theorem.

The derivative f'(x) of a function f(x) measures the slope of the tangent to
the graph of f(x) at that value of x (see figure 2.1 in the next chapter). For
the moment, the reader with no prior knowledge of calculus is asked to accept
that the derivative of ax" is nax"~!, so that the derivative g'(x) of the curve
g(x) = 4x3 4+ 3x> — 6x — 1 is given by g'(x) = 12x> 4 6x — 6. Similar expressions
for the derivatives of other polynomials are used later in this chapter.

Rolle’s theorem states that if f(x) has equal values at two different values of x
then at some point between these two x-values its derivative is equal to zero; i.e.
the tangent to its graph is parallel to the x-axis at that point (see figure 2.2).

Having briefly mentioned the derivative of a function and Rolle’s theorem, we
now use them to establish whether g(x) has one or three real zeros. If g(x) =0
does have three real roots oy, i.e. g(ox) = 0 for k = 1,2,3, then it follows from
Rolle’s theorem that between any consecutive pair of them (say oy and o) there
must be some real value of x at which g’(x) = 0. Similarly, there must be a further
zero of g’(x) lying between o, and a3. Thus a necessary condition for three real
roots of g(x) = 0 is that g’(x) = 0 itself has two real roots.

However, this condition on the number of roots of g’(x) = 0, whilst necessary,
is not sufficient to guarantee three real roots of g(x) = 0. This can be seen by
inspecting the cubic curves in figure 1.1. For each of the two functions ¢;(x) and
¢2(x), the derivative is equal to zero at both x = f; and x = f3,. Clearly, though,
¢2(x) = 0 has three real roots whilst ¢{(x) = 0 has only one. It is easy to see that
the crucial difference is that ¢1(f1) and ¢;(f2) have the same sign, whilst ¢,(f;)
and ¢,(f>) have opposite signs.

It will be apparent that for some equations, ¢(x) = 0 say, ¢'(x) equals zero

5
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at a value of x for which ¢(x) is also zero. Then the graph of ¢(x) just touches
the x-axis. When this happens the value of x so found is, in fact, a double real
root of the polynomial equation (corresponding to one of the my in (1.9) having
the value 2) and must be counted twice when determining the number of real
roots.

Finally, then, we are in a position to decide the number of real roots of the
equation

g(x) =4x* +3x* —6x—1=0.

The equation g'(x) = 0, with g’(x) = 12x? 4+ 6x — 6, is a quadratic equation with
explicit solutions®

-3+£.9+72

ﬁl,Z = T:

so that f; = —1 and f, = % The corresponding values of g(x) are g(f;) = 4 and
g(B2) = —L, which are of opposite sign. This indicates that 4x>+3x>—6x—1 =0
has three real roots, one lying in the range —1 < x < % and the others one on
each side of that range.

The techniques we have developed above have been used to tackle a cubic
equation, but they can be applied to polynomial equations f(x) = 0 of degree
greater than 3. However, much of the analysis centres around the equation
f'(x) = 0 and this itself, being then a polynomial equation of degree 3 or more,
either has no closed-form general solution or one that is complicated to evaluate.
Thus the amount of information that can be obtained about the roots of f(x) =0
is correspondingly reduced.

A more general case

To illustrate what can (and cannot) be done in the more general case we now
investigate as far as possible the real roots of

fx)=x"+5x5+x*—x*+x2—2=0.
The following points can be made.

(i) This is a seventh-degree polynomial equation; therefore the number of
real rootsis 1, 3, 5 or 7.

(i1) f(0) is negative whilst f(c0) = 400, so there must be at least one positive
root.

§ The two roots 1, B, are written as 1. By convention f; refers to the upper symbol in +, f; to
the lower symbol.



1.1 SIMPLE FUNCTIONS AND EQUATIONS

(iii) The equation f’(x) = 0 can be written as x(7x> +30x* +4x?> —3x+2) =0
and thus x = 0 is a root. The derivative of f’(x), denoted by f”(x), equals
42x5 4 150x* + 12x%> — 6x + 2. That f’(x) is zero whilst f”(x) is positive
at x = 0 indicates (subsection 2.1.8) that f(x) has a minimum there. This,
together with the facts that f(0) is negative and f(c0) = oo, implies that
the total number of real roots to the right of x = 0 must be odd. Since
the total number of real roots must be odd, the number to the left must
be even (0, 2, 4 or 6).

This is about all that can be deduced by simple analytic methods in this case,
although some further progress can be made in the ways indicated in exercise 1.3.

There are, in fact, more sophisticated tests that examine the relative signs of
successive terms in an equation such as (1.1), and in quantities derived from
them, to place limits on the numbers and positions of roots. But they are not
prerequisites for the remainder of this book and will not be pursued further
here.

We conclude this section with a worked example which demonstrates that the
practical application of the ideas developed so far can be both short and decisive.

» For what values of k, if any, does
fx)=x"=3x>+6x+k=0

have three real roots?

Firstly we study the equation f’(x) = 0, i.e. 3x> — 6x + 6 = 0. This is a quadratic equation
but, using (1.6), because 6> < 4 x 3 x 6, it can have no real roots. Therefore, it follows
immediately that f(x) has no maximum or minimum; consequently f(x) = 0 cannot have
more than one real root, whatever the value of k. <

1.1.2 Factorising polynomials

In the previous subsection we saw how a polynomial with r given distinct zeros
o, could be constructed as the product of factors containing those zeros:

£ = anfox — o)™ (x = o)™ -+ (x = o)™
=a,x" + ap1 X" "+ + arx + ag, (1.10)

with m; +my + - - - +m, = n, the degree of the polynomial. It will cause no loss of
generality in what follows to suppose that all the zeros are simple, i.e. all m; =1
and r = n, and this we will do.

Sometimes it is desirable to be able to reverse this process, in particular when
one exact zero has been found by some method and the remaining zeros are to
be investigated. Suppose that we have located one zero, «; it is then possible to
write (1.10) as

fx) = (x = 0)f1(x), (1.11)

7
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where f(x) is a polynomial of degree n—1. How can we find f(x)? The procedure
is much more complicated to describe in a general form than to carry out for
an equation with given numerical coefficients g;. If such manipulations are too
complicated to be carried out mentally, they could be laid out along the lines of
an algebraic ‘long division’ sum. However, a more compact form of calculation
is as follows. Write fi(x) as

fl (X) = b,1,1X"71 + br172x”72 + b",3X”73 +--- 4+ b]X + b()-

Substitution of this form into (1.11) and subsequent comparison of the coefficients
of x? for p=mn,n—1, ..., 1, 0 with those in the second line of (1.10) generates
the series of equations

bnfl = dp,
bn—2 - O(bn—l = dy—1,

bn—3 - O(bn—2 = dp-2,

by —ab; = ay,

70617() = dy.

These can be solved successively for the bj, starting either from the top or from
the bottom of the series. In either case the final equation used serves as a check;
if it is not satisfied, at least one mistake has been made in the computation —
or o is not a zero of f(x) = 0. We now illustrate this procedure with a worked
example.

» Determine by inspection the simple roots of the equation
fx)=3x* —x* —10x* —2x+4=0

and hence, by factorisation, find the rest of its roots.

From the pattern of coefficients it can be seen that x = —1 is a solution to the equation.
We therefore write

f(x) = (x + 1)(bax? 4 byx* + byx + bo),

where
by =3,
by + b3 =—1,
b] + bz = —10,
by + by = =2,
by = 4.

These equations give b; = 3,b, = —4,b; = —6,by = 4 (check) and so
F(x) = (x+ Dfi(x) = (x + 1)(3x* — 4x> — 6x + 4).



1.1 SIMPLE FUNCTIONS AND EQUATIONS

We now note that f;(x) = 0 if x is set equal to 2. Thus x — 2 is a factor of f(x), which
therefore can be written as

filx) = (x = 2)f2(x) = (x = 2)(2x” + e1x + ¢o)

with
C) = 3,
Cc1 — 2(‘2 = —4,
Cco — 2(‘1 = —6,
—2(’0 = 4

These equations determine f5(x) as 3x> + 2x — 2. Since f»(x) = 0 is a quadratic equation,
its solutions can be written explicitly as

-1+ /1+6

— s

Thus the four roots of f(x) =0 are —1,2, {(—1 4 /7) and (-1 — /7). «

1.1.3 Properties of roots

From the fact that a polynomial equation can be written in any of the alternative
forms

j(x) = anxn + an_|X'171 —+ .+ arx + ap = 0,
f(X) = an(x - fxl)ml(x - 952)”12 ce (x — ar)mp =0,
F(x) = an(x —on)(x — o) - -+ (x — o) =0,

it follows that it must be possible to express the coefficients @; in terms of the
roots ox. To take the most obvious example, comparison of the constant terms
(formally the coefficient of x°) in the first and third expressions shows that

Cl”(_fX] )(_“2) e (-OC,,) = do,

or, using the product notation,

[Tow =~ (1.12)
k=1 al‘l
Only slightly less obvious is a result obtained by comparing the coefficients of
x"~! in the same two expressions of the polynomial:
n
3 o= (1.13)
k=1 day

Comparing the coefficients of other powers of x yields further results, though
they are of less general use than the two just given. One such, which the reader
may wish to derive, is

n

n
DD mow = (114)

j=1 k>j
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In the case of a quadratic equation these root properties are used sufficiently
often that they are worth stating explicitly, as follows. If the roots of the quadratic
equation ax? + bx 4+ ¢ = 0 are o; and o, then

b
oty =—-,
a

c

ooy = —.

a

If the alternative standard form for the quadratic is used, b is replaced by 2b in
both the equation and the first of these results.

» Find a cubic equation whose roots are —4,3 and 5.

From results (1.12) — (1.14) we can compute that, arbitrarily setting a; = 1,

3 3 3 3
—a =Y =4 a=Y Y au=-17  ay= (1] =6o0.
k=1

j=1 k>j k=1

Thus a possible cubic equation is x> + (—4)x? + (—17)x + (60) = 0. Of course, any multiple
of x* —4x? — 17x + 60 = 0 will do just as well. <

1.2 Trigonometric identities

So many of the applications of mathematics to physics and engineering are
concerned with periodic, and in particular sinusoidal, behaviour that a sure and
ready handling of the corresponding mathematical functions is an essential skill.
Even situations with no obvious periodicity are often expressed in terms of
periodic functions for the purposes of analysis. Later in this book whole chapters
are devoted to developing the techniques involved, but as a necessary prerequisite
we here establish (or remind the reader of) some standard identities with which he
or she should be fully familiar, so that the manipulation of expressions containing
sinusoids becomes automatic and reliable. So as to emphasise the angular nature
of the argument of a sinusoid we will denote it in this section by 6 rather than x.

1.2.1 Single-angle identities

We give without proof the basic identity satisfied by the sinusoidal functions sin 0
and cos 6, namely

cos? 0 +sin’ 0 = 1. (1.15)

If sinf and cos have been defined geometrically in terms of the coordinates of
a point on a circle, a reference to the name of Pythagoras will suffice to establish
this result. If they have been defined by means of series (with 6 expressed in
radians) then the reader should refer to Euler’s equation (3.23) on page 93, and
note that ¢ has unit modulus if 0 is real.

10
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Figure 1.2 Tllustration of the compound-angle identities. Refer to the main
text for details.

Other standard single-angle formulae derived from (1.15) by dividing through
by various powers of sin and cos 0 are

1+ tan’ 0 = sec? 0, (1.16)
cot? § + 1 = cosec 26. (1.17)

1.2.2 Compound-angle identities

The basis for building expressions for the sinusoidal functions of compound
angles are those for the sum and difference of just two angles, since all other
cases can be built up from these, in principle. Later we will see that a study of
complex numbers can provide a more efficient approach in some cases.

To prove the basic formulae for the sine and cosine of a compound angle
A+ B in terms of the sines and cosines of 4 and B, we consider the construction
shown in figure 1.2. It shows two sets of axes, Oxy and Ox'y’, with a common
origin but rotated with respect to each other through an angle A. The point
P lies on the unit circle centred on the common origin O and has coordinates
cos(A4 + B),sin(A4 + B) with respect to the axes Oxy and coordinates cos B, sin B
with respect to the axes Ox'y’.

Parallels to the axes Oxy (dotted lines) and Ox’y’ (broken lines) have been
drawn through P. Further parallels (MR and RN) to the Ox'y’ axes have been

11
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drawn through R, the point (0,sin(4 + B)) in the Oxy system. That all the angles
marked with the symbol e are equal to A follows from the simple geometry of
right-angled triangles and crossing lines.

We now determine the coordinates of P in terms of lengths in the figure,
expressing those lengths in terms of both sets of coordinates:

(i) cosB=x'"=TN+ NP =MR+ NP

= ORsinA4 + RP cos A = sin(A + B)sin A + cos(A + B)cos A4;
(ii) sinB=y =0M —TM =OM — NR

= ORcosA — RPsinA = sin(4 + B)cos A — cos(4 + B)sin A.

Now, if equation (i) is multiplied by sin 4 and added to equation (ii) multiplied
by cos A4, the result is

sin 4 cos B + cos A sin B = sin(4 + B)(sin? A + cos® A) = sin(4 + B).

Similarly, if equation (ii) is multiplied by sin A and subtracted from equation (i)
multiplied by cos A, the result is

cosAcos B —sin Asin B = cos(A + B)(cos®> A + sin> A) = cos(4 + B).

Corresponding graphically based results can be derived for the sines and cosines
of the difference of two angles; however, they are more easily obtained by setting
B to —B in the previous results and remembering that sin B becomes —sin B
whilst cos B is unchanged. The four results may be summarised by

sin(4 + B) = sin A cos B + cos A sin B (1.18)
cos(A + B) = cos A cos B F sin 4 sin B. (1.19)

Standard results can be deduced from these by setting one of the two angles
equal to @ or to n/2:

sin(r — ) = sin 6, cos(n — 6) = —cos 0, (1.20)
sin (3n—0) =cos0, cos(3m—0) =sin0, (1.21)

From these basic results many more can be derived. An immediate deduction,
obtained by taking the ratio of the two equations (1.18) and (1.19) and then
dividing both the numerator and denominator of this ratio by cos 4 cos B, is

tanA +tan B

tan(A+B)= ————————.
an(4 + B) 1FtanAtan B

(1.22)

One application of this result is a test for whether two lines on a graph
are orthogonal (perpendicular); more generally, it determines the angle between
them. The standard notation for a straight-line graph is y = mx + ¢, in which m
is the slope of the graph and c is its intercept on the y-axis. It should be noted
that the slope m is also the tangent of the angle the line makes with the x-axis.

12
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Consequently the angle 01, between two such straight-line graphs is equal to the
difference in the angles they individually make with the x-axis, and the tangent
of that angle is given by (1.22):

tan 0y — tan 0, m; — ny
tan 0y, = = . 1.23
anti 1+tan6itan6, 1+ mm, ( )

For the lines to be orthogonal we must have 6, = /2, i.e. the final fraction on
the RHS of the above equation must equal oo, and so

mymy; = —1. (1.24)

A kind of inversion of equations (1.18) and (1.19) enables the sum or difference
of two sines or cosines to be expressed as the product of two sinusoids; the
procedure is typified by the following. Adding together the expressions given by
(1.18) for sin(A4 + B) and sin(A4 — B) yields

sin(4A + B) + sin(4 — B) = 2sin A cos B.
If we now write A+ B = C and A — B = D, this becomes

sin C 4+ sin D = 2sin (#) cos (%) . (1.25)

In a similar way each of the following equations can be derived:

sinC—sinDchos(C;D)sin(C;D), (1.26)
C+D C-D

cosC +cosD = 2cos (%) cos (T) s (1.27)
D —D

cosC —cosD = —2sin (%) sin (CT> . (1.28)

The minus sign on the right of the last of these equations should be noted; it may
help to avoid overlooking this ‘oddity’ to recall that if C > D then cos C < cos D.

1.2.3 Double- and half-angle identities

Double-angle and half-angle identities are needed so often in practical calculations
that they should be committed to memory by any physical scientist. They can be
obtained by setting B equal to A in results (1.18) and (1.19). When this is done,

13
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and use made of equation (1.15), the following results are obtained:

sin20 = 2sinf cos 0, (1.29)
0520 = cos® 0 — sin> 0
=2cos* 6 —1
=1—2sin?0, (1.30)
2tanf
20 = _—-—"" " 1.31
tan 20 1 —tan?0 (13D)

A further set of identities enables sinusoidal functions of 0 to be expressed in
terms of polynomial functions of a variable t = tan(0/2). They are not used in
their primary role until the next chapter, but we give a derivation of them here
for reference.

If t = tan(6/2), then it follows from (1.16) that 14> = sec?*(6/2) and cos(0/2) =
(14 13712, whilst sin(6/2) = t(1 + ¢*)~'/2. Now, using (1.29) and (1.30), we may
write:

2
sinf = ZSingcosg = Tttz’ (1.32)
0 0 1-—¢
cos 6 =c032§ —sinzi = T;’ (1.33)
2t
tanf = —a (1.34)

It can be further shown that the derivative of 0 with respect to t takes the
algebraic form 2/(1 + ?). This completes a package of results that enables
expressions involving sinusoids, particularly when they appear as integrands, to
be cast in more convenient algebraic forms. The proof of the derivative property
and examples of use of the above results are given in subsection (2.2.7).

We conclude this section with a worked example which is of such a commonly
occurring form that it might be considered a standard procedure.

» Solve for 0 the equation
asinf + bcos 0 =k,

where a,b and k are given real quantities.

To solve this equation we make use of result (1.18) by setting a = K cos ¢ and b = K sin ¢
for suitable values of K and ¢. We then have

k=K cos¢sinf + K sin ¢ cos 0 = K sin(0 + ¢),
with
K>=d+b and ¢=tan‘lg.

Whether ¢ lies in 0 < ¢ < 7 or in —n < ¢ < 0 has to be determined by the individual
signs of a and b. The solution is thus

6 =sin™! <%> — ¢,

14



1.3 COORDINATE GEOMETRY

with K and ¢ as given above. Notice that the inverse sine yields two values in the range 0
to 27 and that there is no real solution to the original equation if [k| > |K| = (a>+b?)!/?. <4

1.3 Coordinate geometry

We have already mentioned the standard form for a straight-line graph, namely
y =mx+e¢, (1.35)

representing a linear relationship between the independent variable x and the
dependent variable y. The slope m is equal to the tangent of the angle the line
makes with the x-axis whilst ¢ is the intercept on the y-axis.

An alternative form for the equation of a straight line is

ax+by+k=0, (1.36)

to which (1.35) is clearly connected by

m=—— and c=—-.

b b

This form treats x and y on a more symmetrical basis, the intercepts on the two
axes being —k/a and —k/b respectively.

A power relationship between two variables, i.e. one of the form y = Ax", can
also be cast into straight-line form by taking the logarithms of both sides. Whilst
it is normal in mathematical work to use natural logarithms (to base e, written
In x), for practical investigations logarithms to base 10 are often employed. In
either case the form is the same, but it needs to be remembered which has been
used when recovering the value of 4 from fitted data. In the mathematical (base
e) form, the power relationship becomes

Iny =nlnx+InA. (1.37)

Now the slope gives the power n, whilst the intercept on the Iny axis is In A,
which yields A, either by exponentiation or by taking antilogarithms.

The other standard coordinate forms of two-dimensional curves that students
should know and recognise are those concerned with the conic sections — so called
because they can all be obtained by taking suitable sections across a (double)
cone. Because the conic sections can take many different orientations and scalings
their general form is complex,

Ax*+ By? + Cxy +Dx+Ey + F =0, (1.38)

but each can be represented by one of four generic forms, an ellipse, a parabola, a
hyperbola or, the degenerate form, a pair of straight lines. If they are reduced to
their standard representations, in which axes of symmetry are made to coincide

15
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with the coordinate axes, the first three take the forms

(X;—f‘)z + (y;—z)z =1 (ellipse), (139)
(v — B)* = da(x — o) (parabola), (1.40)
(X%)z - (y;iz/;y =1 (hyperbola). (1.41)

Here, (o, f) gives the position of the ‘centre’ of the curve, usually taken as
the origin (0,0) when this does not conflict with any imposed conditions. The
parabola equation given is that for a curve symmetric about a line parallel to
the x-axis. For one symmetrical about a parallel to the y-axis the equation would
read (x — «)? = da(y — B).

Of course, the circle is the special case of an ellipse in which b = a and the
equation takes the form

(x—a) +(y—py =d. (1.42)

The distinguishing characteristic of this equation is that when it is expressed in
the form (1.38) the coefficients of x> and y? are equal and that of xy is zero; this
property is not changed by any reorientation or scaling and so acts to identify a
general conic as a circle.

Definitions of the conic sections in terms of geometrical properties are also
available; for example, a parabola can be defined as the locus of a point that
is always at the same distance from a given straight line (the directrix) as it is
from a given point (the focus). When these properties are expressed in Cartesian
coordinates the above equations are obtained. For a circle, the defining property
is that all points on the curve are a distance a from (e, f); (1.42) expresses this
requirement very directly. In the following worked example we derive the equation
for a parabola.

» Find the equation of a parabola that has the line x = —a as its directrix and the point
(a,0) as its focus.

Figure 1.3 shows the situation in Cartesian coordinates. Expressing the defining requirement
that PN and PF are equal in length gives
(xta)=[x—a?+)y]"? = (x+a=(x—a’+)

which, on expansion of the squared terms, immediately gives y? = 4ax. This is (1.40) with
o and  both set equal to zero. <

Although the algebra is more complicated, the same method can be used to
derive the equations for the ellipse and the hyperbola. In these cases the distance
from the fixed point is a definite fraction, e, known as the eccentricity, of the
distance from the fixed line. For an ellipse 0 < e < 1, for a circle e = 0, and for a
hyperbola e > 1. The parabola corresponds to the case e = 1.
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X =—a

Figure 1.3 Construction of a parabola using the point (a,0) as the focus and
the line x = —a as the directrix.

The values of a and b (with a > b) in equation (1.39) for an ellipse are related
to e through

,  a*—b?

@2
and give the lengths of the semi-axes of the ellipse. If the ellipse is centred on
the origin, i.e. « = f# = 0, then the focus is (—ae,0) and the directrix is the line
x = —ale.

For each conic section curve, although we have two variables, x and y, they are
not independent, since if one is given then the other can be determined. However,
determining y when Xx is given, say, involves solving a quadratic equation on each
occasion, and so it is convenient to have parametric representations of the curves.
A parametric representation allows each point on a curve to be associated with
a unique value of a single parameter t. The simplest parametric representations
for the conic sections are as given below, though that for the hyperbola uses
hyperbolic functions, not formally introduced until chapter 3. That they do give
valid parameterizations can be verified by substituting them into the standard
forms (1.39)—(1.41); in each case the standard form is reduced to an algebraic or
trigonometric identity.

X=a+acos¢, y=p+bsing (ellipse),
X = o+ at?, y=p+2at (parabola),
x=o+acosh¢, y=p+bsinh¢ (hyperbola).

As a final example illustrating several topics from this section we now prove

17
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the well-known result that the angle subtended by a diameter at any point on a
circle is a right angle.

» Taking the diameter to be the line joining Q = (—a,0) and R = (a,0) and the point P to
be any point on the circle x* + y* = a?, prove that angle QPR is a right angle.

If P is the point (x, y), the slope of the line QP is

-0
m=2—" __Y
x—(—a) x+4a
That of RP is
I 0 _ v
2T Xx—(@ x—a
Thus
5
=
But, since P is on the circle, y> = a> — x*> and consequently m;m; = —1. From result (1.24)

this implies that QP and RP are orthogonal and that QPR is therefore a right angle. Note
that this is true for any point P on the circle. <

1.4 Partial fractions

In subsequent chapters, and in particular when we come to study integration
in chapter 2, we will need to express a function f(x) that is the ratio of two
polynomials in a more manageable form. To remove some potential complexity
from our discussion we will assume that all the coefficients in the polynomials
are real, although this is not an essential simplification.

The behaviour of f(x) is crucially determined by the location of the zeros of
its denominator, i.e. if f(x) is written as f(x) = g(x)/h(x) where both g(x) and
h(x) are polynomials,’ then f(x) changes extremely rapidly when x is close to
those values «; that are the roots of h(x) = 0. To make such behaviour explicit,
we write f(x) as a sum of terms such as 4/(x — «)", in which A4 is a constant, « is
one of the o; that satisfy h(x;) = 0 and n is a positive integer. Writing a function
in this way is known as expressing it in partial fractions.

Suppose, for the sake of definiteness, that we wish to express the function

4x +2

f(x):x2+3x+2

§ It is assumed that the ratio has been reduced so that g(x) and h(x) do not contain any common
factors, i.e. there is no value of x that makes both vanish at the same time. We may also assume
without any loss of generality that the coefficient of the highest power of x in h(x) has been made
equal to unity, if necessary, by dividing both numerator and denominator by the coefficient of this
highest power.
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in partial fractions, i.e. to write it as

gx) _ 4x+2 A4 n Az n
h(x) x24+3x4+2 (x—o)"  (x—o)"

f(x)=
(1.43)

The first question that arises is that of how many terms there should be on
the right-hand side (RHS). Although some complications occur when h(x) has
repeated roots (these are considered below) it is clear that f(x) only becomes
infinite at the two values of x, oy and oy, that make h(x) = 0. Consequently the
RHS can only become infinite at the same two values of x and therefore contains
only two partial fractions — these are the ones shown explicitly. This argument
can be trivially extended (again temporarily ignoring the possibility of repeated
roots of h(x)) to show that if h(x) is a polynomial of degree n then there should be
n terms on the RHS, each containing a different root o; of the equation h(e;) = 0.

A second general question concerns the appropriate values of the n;. This is
answered by putting the RHS over a common denominator, which will clearly
have to be the product (x — ;)" (x — o)™ - - -. Comparison of the highest power
of x in this new RHS with the same power in h(x) shows that n; +n, +--- =n.
This result holds whether or not h(x) = 0 has repeated roots and, although we
do not give a rigorous proof, strongly suggests the following correct conclusions.

e The number of terms on the RHS is equal to the number of distinct roots of
h(x) = 0, each term having a different root ¢; in its denominator (x — o;)".

e If o; is a multiple root of h(x) = 0 then the value to be assigned to n; in (1.43) is
that of m; when h(x) is written in the product form (1.9). Further, as discussed
on p. 23, A; has to be replaced by a polynomial of degree m; — 1. This is also
formally true for non-repeated roots, since then both m; and n; are equal to
unity.

Returning to our specific example we note that the denominator h(x) has zeros
at x = oy = —1 and x = oy = —2; these x-values are the simple (non-repeated)
roots of h(x) = 0. Thus the partial fraction expansion will be of the form

4x +2 . Ay n Ay
X2+3x+2 x+1 x+42°

(1.44)

We now list several methods available for determining the coefficients 4; and
Aj;. We also remind the reader that, as with all the explicit examples and techniques
described, these methods are to be considered as models for the handling of any
ratio of polynomials, with or without characteristics that make it a special case.

(1) The RHS can be put over a common denominator, in this case (x+1)(x+2),
and then the coefficients of the various powers of x can be equated in the
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(ii)

(iif)

numerators on both sides of the equation. This leads to

4x 4+2=A1(x+2)+ Axr(x + 1),
4=A41+4, 2 =24+ A,

Solving the simultaneous equations for 4; and A, gives A; = —2 and
Ay =6.
A second method is to substitute two (or more generally n) different
values of x into each side of (1.44) and so obtain two (or n) simultaneous
equations for the two (or n) constants A;. To justify this practical way of
proceeding it is necessary, strictly speaking, to appeal to method (i) above,
which establishes that there are unique values for 4; and A, valid for
all values of x. It is normally very convenient to take zero as one of the
values of x, but of course any set will do. Suppose in the present case that
we use the values x = 0 and x = 1 and substitute in (1.44). The resulting
equations are

Ay | Ay
Tt

Ay | A
=5 + 3
which on solution give A; = —2 and A, = 6, as before. The reader can
easily verify that any other pair of values for x (except for a pair that
includes o or o) gives the same values for 4; and A,.

AN NN

The very reason why method (ii) fails if x is chosen as one of the roots
o; of h(x) = 0 can be made the basis for determining the values of the A4;
corresponding to non-multiple roots without having to solve simultaneous
equations. The method is conceptually more difficult than the other meth-
ods presented here, and needs results from the theory of complex variables
(chapter 24) to justify it. However, we give a practical ‘cookbook’ recipe
for determining the coefficients.

(a) To determine the coefficient Ay, imagine the denominator h(x)
written as the product (x — oq)(x — o) - - - (x — &), with any m-fold
repeated root giving rise to m factors in parentheses.

(b) Now set x equal to o and evaluate the expression obtained after
omitting the factor that reads oy — oy.

(c) Divide the value so obtained into g(o); the result is the required
coefficient Ay.

For our specific example we find that in step (a) that h(x) = (x + 1)(x + 2)
and that in evaluating A; step (b) yields —1 4 2, i.e. 1. Since g(—1) =
4(—1) 4+ 2 = =2, step (c) gives A; as (—2)/(1), i.e in agreement with our
other evaluations. In a similar way A, is evaluated as (—6)/(—1) = 6.
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Thus any one of the methods listed above shows that

dx+2 =2 6
X2 4+3x+2 x+1 +x+2'
The best method to use in any particular circumstance will depend on the
complexity, in terms of the degrees of the polynomials and the multiplicities of
the roots of the denominator, of the function being considered and, to some
extent, on the individual inclinations of the student; some prefer lengthy but
straightforward solution of simultaneous equations, whilst others feel more at
home carrying through shorter but more abstract calculations in their heads.

1.4.1 Complications and special cases

Having established the basic method for partial fractions, we now show, through
further worked examples, how some complications are dealt with by extensions
to the procedure. These extensions are introduced one at a time, but of course in
any practical application more than one may be involved.

The degree of the numerator is greater than or equal to that of the denominator

Although we have not specifically mentioned the fact, it will be apparent from
trying to apply method (i) of the previous subsection to such a case, that if the
degree of the numerator (m) is not less than that of the denominator (n) then the
ratio of two polynomials cannot be expressed in partial fractions.

To get round this difficulty it is necessary to start by dividing the denominator
h(x) into the numerator g(x) to obtain a further polynomial, which we will denote
by s(x), together with a function t(x) that is a ratio of two polynomials for which
the degree of the numerator is less than that of the denominator. The function
t(x) can therefore be expanded in partial fractions. As a formula,

f(x) = % = s(x) + t(x) = s(x) + % (1.45)
It is apparent that the polynomial r(x) is the remainder obtained when g(x) is
divided by h(x), and, in general, will be a polynomial of degree n — 1. It is also
clear that the polynomial s(x) will be of degree m — n. Again, the actual division
process can be set out as an algebraic long division sum but is probably more
easily handled by writing (1.45) in the form

g(x) = s(x)h(x) + r(x) (1.46)
or, more explicitly, as

g(x) = (srn—nxm7n+ Srn—n—lxl117'171 + -+ SO)h(x) + (rn—lxni1 + Vn_2X'172+ st rO)
(1.47)

and then equating coefficients.
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We illustrate this procedure with the following worked example.

» Find the partial fraction decomposition of the function

X34 3x2+2x+ 1
xX2—x—6

fx) =

Since the degree of the numerator is 3 and that of the denominator is 2, a preliminary

long division is necessary. The polynomial s(x) resulting from the division will have degree

3 —2 =1 and the remainder r(x) will be of degree 2 — 1 =1 (or less). Thus we write
X4+ 3x2 4 2x 4+ 1 = (s1x + 50)(x* — x — 6) + (r1x + ro).

From equating the coefficients of the various powers of x on the two sides of the equation,
starting with the highest, we now obtain the simultaneous equations

1=s,

3 =150—>51,
2=—s9— 0651+,
1 = —6s¢ + ro.

These are readily solved, in the given order, to yield s; = 1, so =4, r; = 12 and ry = 25.
Thus f(x) can be written as

. 12x 4 25
fO)=x+d+
x2—x—6
The last term can now be decomposed into partial fractions as previously. The zeros of
the denominator are at x = 3 and x = —2 and the application of any method from the
previous subsection yields the respective constants as 4; = 12% and A, = —%. Thus the
final partial fraction decomposition of f(x) is
x+4+ o1 ! <
5(x—3)  5(x+2)

Factors of the form a* + x* in the denominator

We have so far assumed that the roots of h(x) = 0, needed for the factorisation of
the denominator of f(x), can always be found. In principle they always can but
in some cases they are not real. Consider, for example, attempting to express in
partial fractions a polynomial ratio whose denominator is h(x) = x* — x> +2x—2.
Clearly x = 1 is a zero of h(x), and so a first factorisation is (x — 1)(x* + 2).
However we cannot make any further progress because the factor x> + 2 cannot
be expressed as (x — o)(x — f) for any real o and f.

Complex numbers are introduced later in this book (chapter 3) and, when the
reader has studied them, he or she may wish to justify the procedure set out
below. It can be shown to be equivalent to that already given, but the zeros of
h(x) are now allowed to be complex and terms that are complex conjugates of
each other are combined to leave only real terms.

Since quadratic factors of the form a>4-x? that appear in h(x) cannot be reduced
to the product of two linear factors, partial fraction expansions including them
need to have numerators in the corresponding terms that are not simply constants
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1.4 PARTIAL FRACTIONS

A; but linear functions of x, ie. of the form B;x + C;. Thus, in the expansion,
linear terms (first-degree polynomials) in the denominator have constants (zero-
degree polynomials) in their numerators, whilst quadratic terms (second-degree
polynomials) in the denominator have linear terms (first-degree polynomials) in
their numerators. As a symbolic formula, the partial fraction expansion of

g(x)
(x —ar)(x — o)+ (x — ap) (x> + a})(x*> + ad) - - - (x* + a2)

should take the form

A A A Bix+C Byx+C B,x+C
1 + 2 e p 1 21 2 22++%
X—op  X—o x—o,  xX24a x? + a3 x*+a;

Of course, the degree of g(x) must be less than p + 2q; if it is not, an initial
division must be carried out as demonstrated earlier.

Repeated factors in the denominator

Consider trying (incorrectly) to expand

x—4
T = —2p
in partial fraction form as follows:
x—4 Al A2

(x+1)(x—22 x+1 + (x—2)%

Multiplying both sides of this supposed equality by (x 4+ 1)(x — 2)> produces an
equation whose LHS is linear in x, whilst its RHS is quadratic. This is clearly
wrong and so an expansion in the above form cannot be valid. The correction we
must make is very similar to that needed in the previous subsection, namely that
since (x — 2)? is a quadratic polynomial the numerator of the term containing it
must be a first-degree polynomial, and not simply a constant.

The correct form for the part of the expansion containing the doubly repeated
root is therefore (Bx 4 C)/(x — 2)>. Using this form and either of methods (i) and
(ii) for determining the constants gives the full partial fraction expansion as

x—4 5 5x — 16

x+Dx—22 9x+1)  9x—27
as the reader may verify.
Since any term of the form (Bx + C)/(x — )? can be written as

B(x — o)+ C + Ba B C + Ba

(x — a)? Tx—a  (x—a)?

and similarly for multiply repeated roots, an alternative form for the part of the

partial fraction expansion containing a repeated root « is
D D D

1 2 s+ P

x—o (x—oa) (x —o)p

(1.48)
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In this form, all x-dependence has disappeared from the numerators but at the
expense of p— 1 additional terms; the total number of constants to be determined
remains unchanged, as it must.

When describing possible methods of determining the constants in a partial
fraction expansion, we noted that method (iii), p. 20, which avoids the need to
solve simultaneous equations, is restricted to terms involving non-repeated roots.
In fact, it can be applied in repeated-root situations, when the expansion is put
in the form (1.48), but only to find the constant in the term involving the largest
inverse power of x — o, i.e. D, in (1.48).

We conclude this section with a more protracted worked example that contains
all three of the complications discussed.

» Resolve the following expression F(x) into partial fractions:

x> —2x* — x3 4 5x* — 46x + 100

FG) = (2 +6)(x —2)7

We note that the degree of the denominator (4) is not greater than that of the numerator
(5), and so we must start by dividing the latter by the former. It follows, from the difference
in degrees and the coefficients of the highest powers in each, that the result will be a linear
expression s;x + so with the coefficient s; equal to 1. Thus the numerator of F(x) must be
expressible as

(x + 50)(x* — 4x> + 10x% — 24x + 24) + (r3x° + rx? + r1x + 19),

where the second factor in parentheses is the denominator of F(x) written as a polynomial.
Equating the coefficients of x* gives —2 = —4+s, and fixes sy as 2. Equating the coefficients
of powers less than 4 gives equations involving the coefficients r; as follows:

—1=—8410+rs,

5=—24+420+r,
—46 =24 —48 41,
100 = 48 + ro.

Thus the remainder polynomial r(x) can be constructed and F(x) written as

—3x3 4+ 9x2 —22x + 52
1 6(x—27

F(x)=x+2+ =x+42+ f(x).

The polynomial ratio f(x) can now be expressed in partial fraction form, noting that its
denominator contains both a term of the form x> + a*> and a repeated root. Thus

. _BX+C D1 Dz
IN=arg i Ta

We could now put the RHS of this equation over the common denominator (x2+6)(x —2)>
and find B,C,D; and D, by equating coeflicients of powers of x. It is quicker, however,
to use methods (iii) and (ii). Method (iii) gives D, as (—24 4+ 36 — 44 4+ 52)/(4 + 6) = 2.
We choose to evaluate the other coefficients by method (ii), and setting x =0, x = 1 and
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1.5 BINOMIAL EXPANSION

x = —1 gives respectively

36 B+C
7= 7 “Dit2
$_C—B_ D2
63 7 379
These equations reduce to
4C — 12D, =40,

B+ C—17D; =22,
—9B +9C — 21D, =172,

with solution B=0,C =1, D; = —3.
Thus, finally, we may rewrite the original expression F(x) in partial fractions as

1 3 2

X) = . d
F)=x+2+ 5 i Rl e

1.5 Binomial expansion

Earlier in this chapter we were led to consider functions containing powers of
the sum or difference of two terms, e.g. (x — «)™. Later in this book we will find
numerous occasions on which we wish to write such a product of repeated factors
as a polynomial in x or, more generally, as a sum of terms each of which contains
powers of x and o separately, as opposed to a power of their sum or difference.

To make the discussion general and the result applicable to a wide variety of
situations, we will consider the general expansion of f(x) = (x+ y)", where x and
y may stand for constants, variables or functions and, for the time being, n is a
positive integer. It may not be obvious what form the general expansion takes
but some idea can be obtained by carrying out the multiplication explicitly for
small values of n. Thus we obtain successively

(x+»'=x+y,

(x+ ) = (x+y)(x+y)=x"+2xp + )7,

(x + ) = (x + )4 2xy +y?) = x* +3x%y + 3xp* + )%,

(x+ ) = (x + )34+ 33%y +3x92 + %) = x* 4y +6x2y? 4+ dxy +

This does not establish a general formula, but the regularity of the terms in
the expansions and the suggestion of a pattern in the coefficients indicate that a
general formula for power n will have n + 1 terms, that the powers of x and y in

every term will add up to n and that the coefficients of the first and last terms
will be unity whilst those of the second and penultimate terms will be n.

25
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In fact, the general expression, the binomial expansion for power n, is given by

k=n
() = "Cx" ), (1.49)
k=0
where "Cy, is called the binomial coefficient and is expressed in terms of factorial
functions by n!/[k!(n — k)!]. Clearly, simply to make such a statement does not
constitute proof of its validity, but, as we will see in subsection 1.5.2, (1.49) can
be proved using a method called induction. Before turning to that proof, we
investigate some of the elementary properties of the binomial coefficients.

1.5.1 Binomial coefficients

As stated above, the binomial coefficients are defined by

n

|
G n .= (Z) for 0 <k <n, (1.50)

T kln—k)
where in the second identity we give a common alternative notation for "Cy.
Obvious properties include

(i "Co="C, =1,
(ii) "Cy ="Cp_y =n,
(i) "Cp = "C, 4.

We note that, for any given n, the largest coefficient in the binomial expansion is
the middle one (k = n/2) if n is even; the middle two coefficients (k = %(n + 1))
are equal largest if n is odd. Somewhat less obvious is the result

e, 4 n! n!
G = st T kS Dk
_nl[(n+1—k)+k]
T Tkt 1—k)!
_ (n+1)’ __n+l
T kln+1—k)! G (151)

An equivalent statement, in which k has been redefined as k + 1, is

"Cy +"Cip1 ="' Cipa. (1.52)

1.5.2 Proof of the binomial expansion

We are now in a position to prove the binomial expansion (1.49). In doing so, we
introduce the reader to a procedure applicable to certain types of problems and
known as the method of induction. The method is discussed much more fully in
subsection 1.7.1.
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1.6 PROPERTIES OF BINOMIAL COEFFICIENTS

We start by assuming that (1.49) is true for some positive integer n = N. We now
proceed to show that this implies that it must also be true for n = N+1, as follows:

(x+y)N+l V+y ZNCkxN k. k
k=0

NC xN+1 —k k+§ :NCXN k k+1

0 k=0
N+1
N x N1k k+ZNC XN+D=i ),

Il
M=

w
I

Il
M=

T
(=1

where in the first line we have used the assumption and in the third line have
moved the second summation index by unity, by writing k + 1 = j. We now
separate off the first term of the first sum, Y CoxV*!, and write it as N1 CoxN+1;
we can do this since, as noted in (i) following (1.50), "Cy = 1 for every n. Similarly,
the last term of the second summation can be replaced by N*1Cy,yN*!.

The remaining terms of each of the two summations are now written together,
with the summation index denoted by k in both terms. Thus

N
(x +y)N+1 — N+1C0xN+1 + Z (ch + ch—l) x(N+1)fkyk + N+1CN+1yN+1
k=1

— N+t XN+ 4 Z N+ N+ k| N+ e N+
k=1
N+1
_ z N+ O (VDK
k=0
In going from the first to the second line we have used result (1.51). Now we
observe that the final overall equation is just the original assumed result (1.49)
but with n = N + 1. Thus it has been shown that if the binomial expansion is
assumed to be true for n = N, then it can be proved to be true for n = N + 1. But
it holds trivially for n = 1, and therefore for n = 2 also. By the same token it is
valid for n = 3,4,..., and hence is established for all positive integers n.

1.6 Properties of binomial coefficients
1.6.1 Identities involving binomial coefficients

There are many identities involving the binomial coefficients that can be derived
directly from their definition, and yet more that follow from their appearance in
the binomial expansion. Only the most elementary ones, given earlier, are worth
committing to memory but, as illustrations, we now derive two results involving
sums of binomial coefficients.
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The first is a further application of the method of induction. Consider the
proposal that, for any n > 1 and k > 0,

n—1

Zk+sck — n+ka+1. (153)
s=0

Notice that here n, the number of terms in the sum, is the parameter that varies,
k is a fixed parameter, whilst s is a summation index and does not appear on the
RHS of the equation.

Now we suppose that the statement (1.53) about the value of the sum of the
binomial coefficients ¥ Cy, ¥T1Cy, ..., kt"~1Cy is true for n = N. We next write down
a series with an extra term and determine the implications of the supposition for
the new series:

N+1-1

N—1
Z k+SCk — Z k+sck + k+NCk
5s=0 s=0

= N+ + NG,

— N+k+1 Ck+l

But this is just proposal (1.53) with n now set equal to N + 1. To obtain the last
line, we have used (1.52), with n set equal to N + k.

It only remains to consider the case n = 1, when the summation only contains
one term and (1.53) reduces to

/(Ck — 1+ka+1.

This is trivially valid for any k since both sides are equal to unity, thus completing
the proof of (1.53) for all positive integers n.

The second result, which gives a formula for combining terms from two sets
of binomial coefficients in a particular way (a kind of ‘convolution’, for readers
who are already familiar with this term), is derived by applying the binomial
expansion directly to the identity

(e +pP(x+ ) = (x + ).

Written in terms of binomial expansions, this reads

P q ptq
E pchpfsys E thxqft r_ § p+a Crxp-%—qfr‘yr.
s=0 t=0 r=0

We now equate coefficients of x**4~"y" on the two sides of the equation, noting
that on the LHS all combinations of s and ¢ such that s + ¢t = r contribute. This
gives as an identity that

r r

> "C1C =G, =) PCAC . (1.54)
=0 =0
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1.6 PROPERTIES OF BINOMIAL COEFFICIENTS

We have specifically included the second equality to emphasise the symmetrical
nature of the relationship with respect to p and q.

Further identities involving the coefficients can be obtained by giving x and y
special values in the defining equation (1.49) for the expansion. If both are set
equal to unity then we obtain (using the alternative notation so as to produce

familiarity with it)
n n n n ;
(0>+(1)+(2>+~~+<n>=2, (1.55)

whilst setting x = 1 and y = —1 yields

OO0 e

1.6.2 Negative and non-integral values of n

Up till now we have restricted n in the binomial expansion to be a positive
integer. Negative values can be accommodated, but only at the cost of an infinite
series of terms rather than the finite one represented by (1.49). For reasons that
are intuitively sensible and will be discussed in more detail in chapter 4, very
often we require an expansion in which, at least ultimately, successive terms in
the infinite series decrease in magnitude. For this reason, if x > y we consider
(x 4+ y)™™, where m itself is a positive integer, in the form
_ _ y —m
(x_"_y))‘l:(x_"_y))7l=xln<1+;> )
Since the ratio y/x is less than unity, terms containing higher powers of it will be
small in magnitude, whilst raising the unit term to any power will not affect its
magnitude. If y > x the roles of the two must be interchanged.
We can now state, but will not explicitly prove, the form of the binomial
expansion appropriate to negative values of n (n equal to —m):
i k
D) =G =x Y () (1.57)
k=0 x
where the hitherto undefined quantity ~"Cy, which appears to involve factorials
of negative numbers, is given by
emm—+1)---(m+k—1) _lk(m—l—k—l)!

= (-1) —

(1 \k m+k—1
k! (m— 1)k! =D C-

(1.58)

The binomial coefficient on the extreme right of this equation has its normal
meaning and is well defined since m +k — 1 > k.

Thus we have a definition of binomial coefficients for negative integer values
of n in terms of those for positive n. The connection between the two may not
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be obvious, but they are both formed in the same way in terms of recurrence
relations. Whatever the sign of n, the series of coefficients "Cy can be generated
by starting with "Cy = 1 and using the recurrence relation

n—k

"Gt = 4y

"Cy. (1.59)

The difference is that for positive integer n the series terminates when k = n,
whereas for negative n there is no such termination — in line with the infinite
series of terms in the corresponding expansion.

Finally we note that, in fact, equation (1.59) generates the appropriate coef-
ficients for all values of n, positive or negative, integer or non-integer, with the
obvious exception of the case in which x = —y and n is negative. For non-integer
n the expansion does not terminate, even if n is positive.

1.7 Some particular methods of proof

Much of the mathematics used by physicists and engineers is concerned with
obtaining a particular value, formula or function from a given set of data and
stated conditions. However, just as it is essential in physics to formulate the basic
laws and so be able to set boundaries on what can or cannot happen, so it
is important in mathematics to be able to state general propositions about the
outcomes that are or are not possible. To this end one attempts to establish
theorems that state in as general a way as possible mathematical results that
apply to particular types of situation. We conclude this introductory chapter by
describing two methods that can sometimes be used to prove particular classes
of theorems.

The two general methods of proof are known as proof by induction (which
has already been met in this chapter) and proof by contradiction. They share
the common characteristic that at an early stage in the proof an assumption
is made that a particular (unproven) statement is true; the consequences of
that assumption are then explored. In an inductive proof the conclusion is
reached that the assumption is self-consistent and has other equally consistent
but broader implications, which are then applied to establish the general validity
of the assumption. A proof by contradiction, however, establishes an internal
inconsistency and thus shows that the assumption is unsustainable; the natural
consequence of this is that the negative of the assumption is established as true.

Later in this book use will be made of these methods of proof to explore new
territory, e.g. to examine the properties of vector spaces, matrices and groups.
However, at this stage we will draw our illustrative and test examples from earlier
sections of this chapter and other topics in elementary algebra and number theory.
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1.7.1 Proof by induction

The proof of the binomial expansion given in subsection 1.5.2 and the identity
established in subsection 1.6.1 have already shown the way in which an inductive
proof is carried through. They also indicated the main limitation of the method,
namely that only an initially supposed result can be proved. Thus the method
of induction is of no use for deducing a previously unknown result; a putative
equation or result has to be arrived at by some other means, usually by noticing
patterns or by trial and error using simple values of the variables involved. It
will also be clear that propositions that can be proved by induction are limited
to those containing a parameter that takes a range of integer values (usually
infinite).

For a proposition involving a parameter n, the five steps in a proof using
induction are as follows.

(1) Formulate the supposed result for general n.

(ii) Suppose (i) to be true for n = N (or more generally for all values of
n < N; see below), where N is restricted to lie in the stated range.

(iii)) Show, using only proven results and supposition (ii), that proposition (i)
is true forn = N + 1.

(iv) Demonstrate directly, and without any assumptions, that proposition (i) is

true when n takes the lowest value in its range.

It then follows from (iii) and (iv) that the proposition is valid for all values

of n in the stated range.

=

(v

~

(It should be noted that, although many proofs at stage (iii) require the validity
of the proposition only for n = N, some require it for all n less than or equal to N
— hence the form of inequality given in parentheses in the stage (ii) assumption.)

To illustrate further the method of induction, we now apply it to two worked
examples; the first concerns the sum of the squares of the first n natural numbers.

» Prove that the sum of the squares of the first n natural numbers is given by

irz = in(n+1)2n+1). (1.60)
r=1

As previously we start by assuming the result is true for n = N. Then it follows that

N+1 N

S =Y "+ (N+1)

r=1 r=1
= IN(N+ 12N+ 1)+ (N + 1)
=L(N+ 1)[NQN + 1)+ 6N + 6]
= 1N+ D[2N +3)(N +2)]
=IN+ DN+ D+ 12N+ 1) +1].
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This is precisely the original assumption, but with N replaced by N + 1. To complete the
proof we only have to verify (1.60) for n = 1. This is trivially done and establishes the
result for all positive n. The same and related results are obtained by a different method
in subsection 4.2.5. «

Our second example is somewhat more complex and involves two nested proofs
by induction: whilst trying to establish the main result by induction, we find that
we are faced with a second proposition which itself requires an inductive proof.

»Show that Q(n) = n* +2n’ + 2n* +n is divisible by 6 (without remainder ) for all positive
integer values of n.

Again we start by assuming the result is true for some particular value N of n, whilst
noting that it is trivially true for n = 0. We next examine Q(N + 1), writing each of its
terms as a binomial expansion:
OIN+1)=(N+1)* +2(N+ 1P +2(N+ 1) + (N +1)
= (N*4+4N* + 6N> +4N + 1) + 2(N* +3N? + 3N + 1)
+2AN* 42N+ 1)+ (N+1)

= (N*+2N* + 2N? + N) + (4N* + 12N? + 14N + 6).
Now, by our assumption, the group of terms within the first parentheses in the last line
is divisible by 6 and clearly so are the terms 12N? and 6 within the second parentheses.
Thus it comes down to deciding whether 4N* + 14N is divisible by 6 — or equivalently,
whether R(N) = 2N3 + 7N is divisible by 3.

To settle this latter question we try using a second inductive proof and assume that
R(N) is divisible by 3 for N = M, whilst again noting that the proposition is trivially true
for N =M = 0. This time we examine R(M + 1):

RIM+1)=2(M + 1) +7(M +1)
=2M3+3M> +3M + 1)+ 7(M + 1)
= (2M* +7M) + 32M* +2M +3)
By assumption, the first group of terms in the last line is divisible by 3 and the second
group is patently so. We thus conclude that R(N) is divisible by 3 for all N > M, and
taking M = 0 shows that it is divisible by 3 for all N.

We can now return to the main proposition and conclude that since R(N) = 2N3 + 7N

is divisible by 3, 4N3 + 12N? + 14N + 6 is divisible by 6. This in turn establishes that the

divisibility of Q(N + 1) by 6 follows from the assumption that Q(N) divides by 6. Since
Q(0) clearly divides by 6, the proposition in the question is established for all values of n. «

1.7.2 Proof by contradiction

The second general line of proof, but again one that is normally only useful when
the result is already suspected, is proof by contradiction. The questions it can
attempt to answer are only those that can be expressed in a proposition that
is either true or false. Clearly, it could be argued that any mathematical result
can be so expressed but, if the proposition is no more than a guess, the chances
of success are negligible. Valid propositions containing even modest formulae
are either the result of true inspiration or, much more normally, yet another
reworking of an old chestnut!
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The essence of the method is to exploit the fact that mathematics is required
to be self-consistent, so that, for example, two calculations of the same quantity,
starting from the same given data but proceeding by different methods, must give
the same answer. Equally, it must not be possible to follow a line of reasoning and
draw a conclusion that contradicts either the input data or any other conclusion
based upon the same data.

It is this requirement on which the method of proof by contradiction is based.
The crux of the method is to assume that the proposition to be proved is
not true, and then use this incorrect assumption and ‘watertight’ reasoning to
draw a conclusion that contradicts the assumption. The only way out of the
self-contradiction is then to conclude that the assumption was indeed false and
therefore that the proposition is true.

It must be emphasised that once a (false) contrary assumption has been made,
every subsequent conclusion in the argument must follow of necessity. Proof by
contradiction fails if at any stage we have to admit ‘this may or may not be
the case’. That is, each step in the argument must be a necessary consequence of
results that precede it (taken together with the assumption), rather than simply a
possible consequence.

It should also be added that if no contradiction can be found using sound
reasoning based on the assumption then no conclusion can be drawn about either
the proposition or its negative and some other approach must be tried.

We illustrate the general method with an example in which the mathematical
reasoning is straightforward, so that attention can be focussed on the structure
of the proof.

» A rational number r is a fraction r = p/q in which p and q are integers with q positive.
Further, v is expressed in its lowest terms, any integer common factor of p and q having
been divided out.

Prove that the square root of an integer m cannot be a rational number, unless the square
root itself is an integer.

We begin by supposing that the stated result is not true and that we can write an equation

Jm=r= s for integers m,p,q with g % 1.

It then follows that p?> = mgq?®. But, since r is expressed in its lowest terms, p and g, and
hence p? and ¢?, have no factors in common. However, m is an integer; this is only possible
if ¢ = 1 and p? = m. This conclusion contradicts the requirement that g # 1 and so leads
to the conclusion that it was wrong to suppose that /m can be expressed as a non-integer
rational number. This completes the proof of the statement in the question. <«

Our second worked example, also taken from elementary number theory,
involves slightly more complicated mathematical reasoning but again exhibits the
structure associated with this type of proof.

33



PRELIMINARY ALGEBRA

» The prime integers p; are labelled in ascending order, thus py = 1, p, =2, ps =17, etc.
Show that there is no largest prime number.

Assume, on the contrary, that there is a largest prime and let it be py. Consider now the
number g formed by multiplying together all the primes from p; to py and then adding
one to the product, i.e.

q=pip2---pynt+ 1.

By our assumption py is the largest prime, and so no number can have a prime factor
greater than this. However, for every prime p;, i = 1,2,..., N, the quotient ¢/p; has the
form M; + (1/p;) with M; an integer and 1/p; non-integer. This means that q/p; cannot be
an integer and so p; cannot be a divisor of q.

Since ¢ is not divisible by any of the (assumed) finite set of primes, it must be itself a
prime. As ¢ is also clearly greater than py, we have a contradiction. This shows that our
assumption that there is a largest prime integer must be false, and so it follows that there
is no largest prime integer.

It should be noted that the given construction for g does not generate all the primes
that actually exist (e.g. for N = 3,q = 7 rather than the next actual prime value of 5, is
found), but this does not matter for the purposes of our proof by contradiction. «

1.7.3 Necessary and sufficient conditions

As the final topic in this introductory chapter, we consider briefly the notion
of, and distinction between, necessary and sufficient conditions in the context
of proving a mathematical proposition. In ordinary English the distinction is
well defined, and that distinction is maintained in mathematics. However, in
the authors’ experience students tend to overlook it and assume (wrongly) that,
having proved that the validity of proposition 4 implies the truth of proposition
B, it follows by ‘reversing the argument’ that the validity of B automatically
implies that of A.

As an example, let proposition A be that an integer N is divisible without
remainder by 6, and proposition B be that N is divisible without remainder by
2. Clearly, if A is true then it follows that B is true, i.e. 4 is a sufficient condition
for B; it is not however a necessary condition, as is trivially shown by taking N
as 8. Conversely, the same value of N shows that whilst the validity of B is a
necessary condition for 4 to hold, it is not sufficient.

An alternative terminology to ‘necessary’ and ‘sufficient’ often employed by
mathematicians is that of ‘if” and ‘only if’, particularly in the combination ‘if and
only if” which is usually written as IFF or denoted by a double-headed arrow
<= . The equivalent statements can be summarised by

Aif B A is true if B is true or B=— A,
B is a sufficient condition for 4 B=— A,
A only if B A is true only if B is true or A= B,

B is a necessary consequence of 4 A =—> B,

34



1.7 SOME PARTICULAR METHODS OF PROOF

A IFF B A is true if and only if B is true or B < A,
A and B necessarily imply each other B <= A.

Although at this stage in the book we are able to employ for illustrative purposes
only simple and fairly obvious results, the following example is given as a model
of how necessary and sufficient conditions should be proved. The essential point
is that for the second part of the proof (whether it be the ‘necessary’ part or the
‘sufficient’ part) one needs to start again from scratch; more often than not, the
lines of the second part of the proof will not be simply those of the first written
in reverse order.

» Prove that (A) a function f(x) is a quadratic polynomial with zeros at x =2 and x =3
if and only if (B) the function f(x) has the form A(x*—5x+ 6) with A a non-zero constant.

(1) Assume 4, ie. that f(x) is a quadratic polynomial with zeros at x = 2 and x = 3. Let
its form be ax? + bx + ¢ with a # 0. Then we have

4a+2b+c=0,

9a+3b+c¢=0,
and subtraction shows that 5a + b = 0 and b = —5a. Substitution of this into the first of
the above equations gives ¢ = —4a — 2b = —4a + 10a = 6a. Thus, it follows that

f(x) =a(x*—5x+6) with a#0,

and establishes the ‘4 only if B* part of the stated result.

(2) Now assume that f(x) has the form A(x> — 5x + 6) with / a non-zero constant. Firstly
we note that f(x) is a quadratic polynomial, and so it only remains to prove that its
zeros occur at x = 2 and x = 3. Consider f(x) = 0, which, after dividing through by the
non-zero constant A, gives

x*—5x+6=0.
We proceed by using a technique known as completing the square, for the purposes of

illustration, although the factorisation of the above equation should be clear to the reader.
Thus we write

X2 —Sx+ (3P =P +6=0,
X

S 41
X Z—iz.

The two roots of f(x) = 0 are therefore x = 2 and x = 3; these x-values give the zeros
of f(x). This establishes the second (‘4 if B’) part of the result. Thus we have shown
that the assumption of either condition implies the validity of the other and the proof is
complete. «

It should be noted that the propositions have to be carefully and precisely
formulated. If, for example, the word ‘quadratic’ were omitted from A, statement
B would still be a sufficient condition for A but not a necessary one, since f(x)
could then be x3 —4x? + x + 6 and 4 would not require B. Omitting the constant
A from the stated form of f(x) in B has the same effect. Conversely, if 4 were to
state that f(x) = 3(x —2)(x — 3) then B would be a necessary condition for A but
not a sufficient one.
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1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8 Exercises

Polynomial equations

Continue the investigation of equation (1.7), namely
g(x) =4x* +3x> —6x—1,
as follows.

(a) Make a table of values of g(x) for integer values of x between —2 and 2. Use
it and the information derived in the text to draw a graph and so determine
the roots of g(x) = 0 as accurately as possible.

(b) Find one accurate root of g(x) = 0 by inspection and hence determine precise
values for the other two roots.

(c) Show that f(x) = 4x> 4+ 3x> — 6x —k = 0 has only one real root unless
—S5<k<1.

Determine how the number of real roots of the equation
g(x) =4x* —17x* + 10x + k=0

depends upon k. Are there any cases for which the equation has exactly two
distinct real roots?
Continue the analysis of the polynomial equation

fx)=x"+5x +x* —x*+x2—2=0,
investigated in subsection 1.1.1, as follows.

(a) By writing the fifth-degree polynomial appearing in the expression for f’(x)
in the form 7x° + 30x* + a(x — b)? + ¢, show that there is in fact only one
positive root of f(x) =0.

(b) By evaluating f(1), f(0) and f(—1), and by inspecting the form of f(x) for
negative values of x, determine what you can about the positions of the real
roots of f(x) =0.

Given that x = 2 is one root of
g(x) =2x* +4x3 —9x* —11x — 6 =0,

use factorisation to determine how many real roots it has.

Construct the quadratic equations that have the following pairs of roots:

(a) —6,—3; (b) 0,4; (c) 2,2; (d) 3 + 2i,3 — 2i, where i* = —1.

Use the results of (i) equation (1.13), (ii) equation (1.12) and (iii) equation (1.14)
to prove that if the roots of 3x* — x> — 10x 4+ 8 = 0 are a;,a, and o3 then

(@) o'+l 403! =5/4,

(b) o +a3 +0F =61/9,

(¢) of +03 +o3 =—125/27.

(d) Convince yourself that eliminating (say) o, and o3 from (i), (ii) and (iii) does
not give a simple explicit way of finding o;.

Trigonometric identities
Prove that

7r _\/§+1

COS —

2 22

by considering
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1.8 EXERCISES

1.8

1.9

1.10

1.12

1.13

1.15

(a) the sum of the sines of #/3 and 7/6,
(b) the sine of the sum of 7/3 and n/4.

The following exercises are based on the half-angle formulae.

(a) Use the fact that sin(z/6) = 1/2 to prove that tan(n/12) = 2 — /3.
(b) Use the result of (a) to show further that tan(n/24) = q(2 — q) where

¢ =2+43
Find the real solutions of
(a) 3sinf —4cosf =2,
(b) 4sinf + 3cosl =6,
(¢) 12sinf — Scosf = —6.
If s = sin(n/8), prove that
8s* —8s7+1=0,

and hence show that s = [(2 — /2)/4]"/%.
Find all the solutions of

sin 0 + sin 40 = sin 20 + sin 30

that lie in the range —n < 6 < n. What is the multiplicity of the solution § = 0?

Coordinate geometry
Obtain in the form (1.38) the equations that describe the following:

(a) a circle of radius 5 with its centre at (1,—1);

(b) the line 2x + 3y +4 = 0 and the line orthogonal to it which passes through
(1,1);

(c) an ellipse of eccentricity 0.6 with centre (1, 1) and its major axis of length 10
parallel to the y-axis.

Determine the forms of the conic sections described by the following equations:

(a) x*+y*+6x+8y=0;

(b) 9x> —4y?* —54x — 16y +29 =0;
(c) 2x2+2y*+5xy —4x+y—6=0;
(d) x>+ y*+2xy —8x+8y =0.

For the ellipse
2 2
X Y
e !
with eccentricity e, the two points (—ae,0) and (ae, 0) are known as its foci. Show
that the sum of the distances from any point on the ellipse to the foci is 2a. (The
constancy of the sum of the distances from two fixed points can be used as an

alternative defining property of an ellipse.)

Partial fractions
Resolve the following into partial fractions using the three methods given in
section 1.4, verifying that the same decomposition is obtained by each method:
2x +1 4

S e T ®)

x2 —3x
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1.16

1.18

1.19

1.20

1.21

1.22

1.23
1.24

1.25

1.26

Express the following in partial fraction form:

2x3 —5x+1 X +x—1
— b) 5——.
(@) x2—2x—8" ()x2+x—2
Rearrange the following functions in partial fraction form:
x—6 X +3x2+x+19
(a) by =—— =T 7

X —x2+4x—4 x*+10x24+9
Resolve the following into partial fractions in such a way that x does not appear
in any numerator:

2x2+x+1 x2—2 x3—x—1

@ ey P vrseriee YGaryvern

Binomial expansion
Evaluate those of the following that are defined: (a) °Cs, (b) *Cs, (c) ~—Cs, (d)
-3
- C5.
Use a binomial expansion to evaluate 1/./4.2 to five places of decimals, and
compare it with the accurate answer obtained using a calculator.

Proof by induction and contradiction

Prove by induction that
Zr: in(n+1)  and Zr3= In*(n+ 1%
r=1 r=1

Prove by induction that

1— rn+1

1—r
Prove that 3*" + 7, where n is a non-negative integer, is divisible by 8.

If a sequence of terms, u,, satisfies the recurrence relation u,4+; = (1 — x)u, + nx,
with u; = 0, show, by induction, that, for n > 1,

Ltr+r 4=

1[nx—l-‘r(l—x)”].

n = =
X

Prove by induction that
iltan g = i(:ot E —cotf
p_— or 2r - on on .

The quantities a; in this exercise are all positive real numbers.

(a) Show that
2
ay+a
ara; < <%) .

(b) Hence prove, by induction on m, that
a +az+--'+ap>p
-, )

where p = 2" with m a positive integer. Note that each increase of m by
unity doubles the number of factors in the product.

a1a2~-<apg<
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1.27

1.28

1.29

1.33

1.1

1.3

1.5
1.7

Establish the values of k for which the binomial coefficient ?Cy is divisible by p
when p is a prime number. Use your result and the method of induction to prove
that n? — n is divisible by p for all integers n and all prime numbers p. Deduce
that n° — n is divisible by 30 for any integer n.

An arithmetic progression of integers a, is one in which a, = ag + nd, where aq
and d are integers and n takes successive values 0,1,2,....

(a) Show that if any one term of the progression is the cube of an integer then
so are infinitely many others.

(b) Show that no cube of an integer can be expressed as 7n+ 5 for some positive
integer n.

Prove, by the method of contradiction, that the equation
X" ap X" Fax+ag=0,

in which all the coefficients a; are integers, cannot have a rational root, unless
that root is an integer. Deduce that any integral root must be a divisor of ay and
hence find all rational roots of

(a) x*+6x3+4x*+5x+4=0,
(b) x*+5x>+2x>—10x+6 = 0.

Necessary and sufficient conditions
Prove that the equation ax? + bx + ¢ = 0, in which a, b and ¢ are real and a > 0,
has two real distinct solutions IFF b? > 4ac.
For the real variable x, show that a sufficient, but not necessary, condition for
f(x) =x(x+ 1)(2x + 1) to be divisible by 6 is that x is an integer.
Given that at least one of a and b, and at least one of ¢ and d, are non-zero,
show that ad = bc is both a necessary and sufficient condition for the equations

ax+by =0,
cx+dy =0,

to have a solution in which at least one of x and y is non-zero.

The coefficients a; in the polynomial Q(x) = asx* 4+ a;x> + ayx? + a;x are all
integers. Show that Q(n) is divisible by 24 for all integers n > 0 if and only if all
of the following conditions are satisfied:

(i) 2a4 + as is divisible by 4;

(ii) a4 + a, is divisible by 12;

(iii) a4 + a3 + a, + a; is divisible by 24.

1.9 Hints and answers

(b) The roots are 1, {(—7 + 4/33) = —0.1569, 1 (=7 — /33) = —1.593. (c) —5 and

% are the values of k that make f(—1) and f(%) equal to zero.

(@) a=4,b=23and c =2 are all positive. Therefore f'(x) > 0 for all x > 0.

(b) f(1) =5, f(0) =—2 and f(—1) =5, and so there is at least one root in each
of the ranges 0 < x < 1 and —1 < x < 0. (x” +5x%) + (x* — x*) + (x> —2)
is positive definite for —5 < x < —/2. There are therefore no roots in this
range, but there must be one to the left of x = —5.

(a) x> +9x+18=0; (b) x> —4x =0; (c) x> —4x+4 =0; (d) x> —6x+ 13 =0.

(a) Use sin(n/4) = 1/4/2. (b) Use results (1.20) and (1.21).

(a) 1.339, —2.626. (b) No solution because 6> > 42 + 32, (c) —0.0849, —2.276.
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1.13

1.15

1.17

1.19
1.21

1.23
1.25

1.27

1.29

1.33

Show that the equation is equivalent to sin(50/2)sin(6)sin(6/2) = 0.
Solutions are —4n/5,—2n/5,0,2n/5,4n/5, 7. The solution 6 = 0 has multiplicity
3

(é) A circle of radius 5 centred on (—3,—4).
(b) A hyperbola with ‘centre’ (3, —2) and ‘semi-axes’ 2 and 3.
(c) The expression factorises into two lines, x +2y —3 =0 and 2x+y +2 = 0.
(d) Write the expression as (x+y)> = 8(x—y) to see that it represents a parabola
passing through the origin, with the line x + y = 0 as its axis of symmetry.
4
s b) —— .
(@) 7(x—2)+7(x+5) ®) 3x+3(x—3)
x+2 1 x+1 2
(a)x2+47x 1’ (b)>.2+9+x2+1'

(a) 10, (b) not defined, (c) —35, (d) —21.

Look for factors common to the n = N sum and the additional n = N + 1 term,
so as to reduce the sum for n = N + 1 to a single term.

Write 3*" as 8m — 7.

Use the half-angle formulae of equations (1.32) to (1.34) to relate functions of
0/2% to those of /21,

Divisible for k = 1,2,...,p — 1. Expand (n + 1)’ as n” + Zf“vcknk + 1. Apply
the stated result for p = 5. Note that n° —n = n(n— 1)(n + 1)(n* + 1); the product
of any three consecutive integers must divide by both 2 and 3.

By assuming x = p/q with ¢ # 1, show that a fraction —p"/q is equal to an
integer a,_p""' + -+ + aipq" > + apq""". This is a contradiction, and is only
resolved if ¢ = 1 and the root is an integer.

(a) The only possible candidates are +1,+2, +4. None is a root.

(b) The only possible candidates are +1, 42, +3,+6. Only —3 is a root.

f(x) can be written as x(x + 1)(x + 2) + x(x + 1)(x — 1). Each term consists of
the product of three consecutive integers, of which one must therefore divide by
2 and (a different) one by 3. Thus each term separately divides by 6, and so
therefore does f(x). Note that if x is the root of 2x* + 3x? + x — 24 = 0 that lies
near the non-integer value x = 1.826, then x(x + 1)(2x 4+ 1) = 24 and therefore
divides by 6.

Note that, e.g., the condition for 6as + a3 to be divisible by 4 is the same as the
condition for 2a4 4 a3 to be divisible by 4.

For the necessary (only if) part of the proof set n = 1,2,3 and take integer
combinations of the resulting equations.

For the sufficient (if) part of the proof use the stated conditions to prove the
proposition by induction. Note that n’ — n is divisible by 6 and that n*> +n is
even.
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2

Preliminary calculus

This chapter is concerned with the formalism of probably the most widely used
mathematical technique in the physical sciences, namely the calculus. The chapter
divides into two sections. The first deals with the process of differentiation and the
second with its inverse process, integration. The material covered is essential for
the remainder of the book and serves as a reference. Readers who have previously
studied these topics should ensure familiarity by looking at the worked examples
in the main text and by attempting the exercises at the end of the chapter.

2.1 Differentiation

Differentiation is the process of determining how quickly or slowly a function
varies, as the quantity on which it depends, its argument, is changed. More
specifically it is the procedure for obtaining an expression (numerical or algebraic)
for the rate of change of the function with respect to its argument. Familiar
examples of rates of change include acceleration (the rate of change of velocity)
and chemical reaction rate (the rate of change of chemical composition). Both
acceleration and reaction rate give a measure of the change of a quantity with
respect to time. However, differentiation may also be applied to changes with
respect to other quantities, for example the change in pressure with respect to a
change in temperature.

Although it will not be apparent from what we have said so far, differentiation
is in fact a limiting process, that is, it deals only with the infinitesimal change in
one quantity resulting from an infinitesimal change in another.

2.1.1 Differentiation from first principles

Let us consider a function f(x) that depends on only one variable x, together with
numerical constants, for example, f(x) = 3x> or f(x) = sinx or f(x) = 2 + 3/x.
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PRELIMINARY CALCULUS

Figure 2.1 The graph of a function f(x) showing that the gradient or slope
of the function at P, given by tan 0, is approximately equal to Af/Ax.

Figure 2.1 shows an example of such a function. Near any particular point,
P, the value of the function changes by an amount Af, say, as x changes
by a small amount Ax. The slope of the tangent to the graph of f(x) at P
is then approximately Af/Ax, and the change in the value of the function is
Af = f(x + Ax) — f(x). In order to calculate the true value of the gradient, or
first derivative, of the function at P, we must let Ax become infinitesimally small.
We therefore define the first derivative of f(x) as

Fx)= TN _ gy [xH89 = 7). 2.1)

dx Ax—0 Ax
provided that the limit exists. The limit will depend in almost all cases on the
value of x. If the limit does exist at a point x = a then the function is said to be
differentiable at a; otherwise it is said to be non-differentiable at a. The formal
concept of a limit and its existence or non-existence is discussed in chapter 4; for
present purposes we will adopt an intuitive approach.

In the definition (2.1), we allow Ax to tend to zero from either positive or
negative values and require the same limit to be obtained in both cases. A
function that is differentiable at a is necessarily continuous at a (there must be
no jump in the value of the function at a), though the converse is not necessarily
true. This latter assertion is illustrated in figure 2.1: the function is continuous
at the ‘kink’ 4 but the two limits of the gradient as Ax tends to zero from
positive or negative values are different and so the function is not differentiable
at 4.

It should be clear from the above discussion that near the point P we may
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2.1 DIFFERENTIATION

approximate the change in the value of the function, Af, that results from a small
change Ax in x by

df(x)

Af = I

Ax. (22

As one would expect, the approximation improves as the value of Ax is reduced.
In the limit in which the change Ax becomes infinitesimally small, we denote it
by the differential dx, and (2.2) reads

df(x)dx.

df = dx

(2.3)

This equality relates the infinitesimal change in the function, df, to the infinitesimal
change dx that causes it.

So far we have discussed only the first derivative of a function. However, we
can also define the second derivative as the gradient of the gradient of a function.
Again we use the definition (2.1) but now with f(x) replaced by f’(x). Hence the
second derivative is defined by

i ¥+ AX) — f’(x)’
Ax—0 Ax

)= (24)

provided that the limit exists. A physical example of a second derivative is the
second derivative of the distance travelled by a particle with respect to time. Since
the first derivative of distance travelled gives the particle’s velocity, the second
derivative gives its acceleration.

We can continue in this manner, the nth derivative of the function f(x) being
defined by

(n—1) _ f(n—1)
My — i S+ AX) — f(x)
F0 = fim, A

. (2.5)

It should be noted that with this notation f'(x) = f!)(x), f”(x) = f®(x), etc., and
that formally f©@(x) = f(x).

All this should be familiar to the reader, though perhaps not with such formal
definitions. The following example shows the differentiation of f(x) = x? from first
principles. In practice, however, it is desirable simply to remember the derivatives
of standard functions; the techniques given in the remainder of this section can
be applied to find more complicated derivatives.
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» Find from first principles the derivative with respect to x of f(x) = x%.

Using the definition (2.1),

) — tim LAY 1)

Ax—0 Ax
. (x+Ax)PF—=X2
= lim ———M—
Ax—0 Ax
. 2xAx + (Ax)?
= lim ——
Ax—0 Ax
= lim (2x + Ax).
Ax—0

As Ax tends to zero, 2x + Ax tends towards 2x, hence
f'(x) =2x. «

Derivatives of other functions can be obtained in the same way. The derivatives
of some simple functions are listed below (note that a is a constant):

d d d 1
o~ (x") = nx"", o~ (e™) = ae™, o~ (Inax) = ;e
d . d . d
— (sinax) = acosax, ——(cosax)= —asinax, —— (secax) = asecax tanax,
dx dx dx
d 5 d
— (tanax) = asec” ax, — (cosec ax) = —a cosec ax cot ax,
dx dx
i (cotax) = —a cosec’ ax i (sin’1 E) = #
dx - ’ dx a - /a2 — xzj

d X -1 d X a
& (o' ) = Ji—a & (w0 2) =
Differentiation from first principles emphasises the definition of a derivative as

the gradient of a function. However, for most practical purposes, returning to the
definition (2.1) is time consuming and does not aid our understanding. Instead, as
mentioned above, we employ a number of techniques, which use the derivatives
listed above as ‘building blocks’, to evaluate the derivatives of more complicated
functions than hitherto encountered. Subsections 2.1.2-2.1.7 develop the methods
required.

2.1.2 Differentiation of products

As a first example of the differentiation of a more complicated function, we
consider finding the derivative of a function f(x) that can be written as the
product of two other functions of x, namely f(x) = u(x)v(x). For example, if

f(x) = x3¥sinx then we might take u(x) = x> and v(x) = sinx. Clearly the
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separation is not unique. (In the given example, possible alternative break-ups

Tcosx.)

would be u(x) = x%, v(x) = xsinx, or even u(x) = x* tan x, v(x) = x~

The purpose of the separation is to split the function into two (or more) parts,
of which we know the derivatives (or at least we can evaluate these derivatives
more easily than that of the whole). We would gain little, however, if we did
not know the relationship between the derivative of f and those of u and v.
Fortunately, they are very simply related, as we shall now show.

Since f(x) is written as the product u(x)v(x), it follows that
f(x 4+ Ax) — f(x) = u(x + Ax)v(x + Ax) — u(x)v(x)
= u(x + Ax)[v(x + Ax) — v(x)] + [u(x + Ax) — u(x)]v(x).
From the definition of a derivative (2.1),

df _ o G AY) — ()

dx ~ Ax=0 Ax
= Alirilo {u(x + Ax) {u(x + AAxi — U(X)] + {u(x + AAX)Z — u(x)} v(x)} .

In the limit Ax — 0, the factors in square brackets become dv/dx and du/dx
(by the definitions of these quantities) and u(x + Ax) simply becomes u(x).
Consequently we obtain

af _d dv(x)  du(x)

T = ] = un S+ () (26)

In primed notation and without writing the argument x explicitly, (2.6) is stated
concisely as

=) =w' +u'v. 2.7

This is a general result obtained without making any assumptions about the
specific forms f, u and v, other than that f(x) = u(x)v(x). In words, the result
reads as follows. The derivative of the product of two functions is equal to the
first function times the derivative of the second plus the second function times the
derivative of the first.

| » Find the derivative with respect to x of f(x) = x° sin x.

Using the product rule, (2.6),
d . d . d .
EOC} sinx) = X3E(sm x)+ E(x3) sin x
= x*cosx 4 3x?sin x. «

The product rule may readily be extended to the product of three or more
functions. Considering the function

F(x) = u(x)o(x)w(x) (2.8)
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and using (2.6), we obtain, as before omitting the argument,

df du
i ua (vw) + %Lw.

Using (2.6) again to expand the first term on the RHS gives the complete result

dw d 1
i + u—vw + %UW (2.9)

4 ow) =
dx S TR T

or
(uow) = uwow’ + uv'w + u'vw. (2.10)

It is readily apparent that this can be extended to products containing any number
n of factors; the expression for the derivative will then consist of n terms with
the prime appearing in successive terms on each of the n factors in turn. This is
probably the easiest way to recall the product rule.

2.1.3 The chain rule

Products are just one type of complicated function that we may encounter in
differentiation. Another is the function of a function, e.g. f(x) = 3+x?)* = u(x)?,
where u(x) = 3 + x2. If Af, Au and Ax are small finite quantities, it follows that

A _ Af Au.
Ax  AuAx’

As the quantities become infinitesimally small we obtain
df  df du

This is the chain rule, which we must apply when differentiating a function of a
function.

» Find the derivative with respect to x of f(x) = (3 + x?)°.

Rewriting the function as f(x) = u’, where u(x) = 3 + x2, and applying (2.11) we find

4 _ 3142ﬂ = 3u21(3 +x%) =3 x 2x = 6x(3 + x%)*. <
dx dx dx

Similarly, the derivative with respect to x of f(x) = 1/v(x) may be obtained by
rewriting the function as f(x) = v~ and applying (2.11):
df _,dv 1 dv
Yooy T 2.12
dx Y i v? dx (212)
The chain rule is also useful for calculating the derivative of a function f with
respect to x when both x and f are written in terms of a variable (or parameter),
say t.
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» Find the derivative with respect to x of f(t) = 2at, where x = at>.

We could of course substitute for ¢t and then differentiate f as a function of x, but in this
case it is quicker to use

dx  drdx " 2at
where we have used the fact that
de _ (dx\T
dx  \ dt ’

df _df dt 11
t

5

2.1.4 Differentiation of quotients

Applying (2.6) for the derivative of a product to a function f(x) = u(x)[1/v(x)],
we may obtain the derivative of the quotient of two factors. Thus

£ (5) e () ()

where (2.12) has been used to evaluate (1/v). This can now be rearranged into
the more convenient and memorisable form

u\’  vu —u'

= (—) =— (2.13)
v v

This can be expressed in words as the derivative of a quotient is equal to the bottom

times the derivative of the top minus the top times the derivative of the bottom, all
over the bottom squared.

| » Find the derivative with respect to x of f(x) = sinx/Xx.

Using (2.13) with u(x) = sinx, v(x) = x and hence u/(x) = cos x, v'(x) = 1, we find

Xcosx —sinx  cosx  sinx
filx) = ZEEEAAE SR SRS

x2 x x2

2.1.5 Implicit differentiation

So far we have only differentiated functions written in the form y = f(x).
However, we may not always be presented with a relationship in this simple
form. As an example consider the relation x* — 3xy 4+ y3 = 2. In this case it is
not possible to rearrange the equation to give y as a function of x. Nevertheless,
by differentiating term by term with respect to x (implicit differentiation), we can
find the derivative of y.
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» Find dy/dx if x* —3xy +y> = 2.

Differentiating each term in the equation with respect to x we obtain

d , d d 5 d
E(X ) a(b@/)*‘ E(y )= E(z)’
= 3x’— 3xd—y+3y +3y2dl=0’
dx dx

where the derivative of 3xy has been found using the product rule. Hence, rearranging for
dy/dx,
dy y—x*

dx  y?—x’

Note that dy/dx is a function of both x and y and cannot be expressed as a function of x
only. «

2.1.6 Logarithmic differentiation

In circumstances in which the variable with respect to which we are differentiating
is an exponent, taking logarithms and then differentiating implicitly is the simplest
way to find the derivative.

» Find the derivative with respect to x of 'y = a*.

To find the required derivative we first take logarithms and then differentiate implicitly:
1dy

;dx =Ina.

Iny=Ina*=xIna =

Now, rearranging and substituting for y, we find
d

—y' =ylna=a"lna. «

dx

2.1.7 Leibnitz’ theorem

We have discussed already how to find the derivative of a product of two or more
functions. We now consider Leibnitz’ theorem, which gives the corresponding
results for the higher derivatives of products.

Consider again the function f(x) = u(x)v(x). We know from the product rule
that f’ = uv’ + u'v. Using the rule once more for each of the products, we obtain
f// — (uv/! + u/v!) + (u/v/ + u//v)

=w" + 2u'v +u'v.
Similarly, differentiating twice more gives
f/// — le/// + 3“’1]” + 3“”1)/ + u///v

f(4) — MU(4) + au'y" + 6u'v" + 4"y’ + u(4)u.
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The pattern emerging is clear and strongly suggests that the results generalise to

n n

£ = Z n! up=r) — chru(r)v(n—r), (2.14)

(n—r)!
e rl(n—r)! g

where the fraction n!/[r!(n —r)!] is identified with the binomial coefficient "C,
(see chapter 1). To prove that this is so, we use the method of induction as follows.
Assume that (2.14) is valid for n equal to some integer N. Then

N+1) Z NC (r)v(N—r‘))

N
— Z Ncr [u(r)U(N—r-H) + u(r+l)v(N—r]]
r=0
N+1

_ZNCu(s ), (N+1— v)+ZNc N+1 s)

where we have substituted summation index s for r in the first summation, and
for r + 1 in the second. Now, from our earlier discussion of binomial coefficients,
equation (1.51), we have

Ncs + NCS*I — N+1CS

and so, after separating out the first term of the first summation and the last
term of the second, obtain

f(N+1) — N Cou N+ 4 Z N1 O p(NH1=5) L Ny (N+1)(0)

But ¥Cy =1 =N+1Cy and NCy = 1 = ¥ Cyy4, and so we may write

N
f(N+1) — N+1C0u(0)v(N+1) + ZN“CSM(S)U(N“*“) + N+1CN+IM(N+1)U(())
s=1
N+1
_ Z N+1C u®Op(N+1=s)

This is just (2.14) with n set equal to N + 1. Thus, assuming the validity of (2.14)
for n = N implies its validity for n = N + 1. However, when n = 1 equation
(2.14) is simply the product rule, and this we have already proved directly. These
results taken together establish the validity of (2.14) for all n and prove Leibnitz’
theorem.
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fx)

RY

Figure 2.2 A graph of a function, f(x), showing how differentiation corre-
sponds to finding the gradient of the function at a particular point. Points B,
Q and S are stationary points (see text).

|>Find the third derivative of the function f(x) = x*sin x.

Using (2.14) we immediately find

f"(x) = 6sinx + 3(6x) cos x + 3(3x?)(— sin x) + x*(— cos x)
=3(2 —3x%)sinx + x(18 — x?) cos x. «

2.1.8 Special points of a function

We have interpreted the derivative of a function as the gradient of the function at
the relevant point (figure 2.1). If the gradient is zero for some particular value of
x then the function is said to have a stationary point there. Clearly, in graphical
terms, this corresponds to a horizontal tangent to the graph.

Stationary points may be divided into three categories and an example of each
is shown in figure 2.2. Point B is said to be a minimum since the function increases
in value in both directions away from it. Point Q is said to be a maximum since
the function decreases in both directions away from it. Note that B is not the
overall minimum value of the function and Q is not the overall maximum; rather,
they are a local minimum and a local maximum. Maxima and minima are known
collectively as turning points.

The third type of stationary point is the stationary point of inflection, S. In
this case the function falls in the positive x-direction and rises in the negative
x-direction so that S is neither a maximum nor a minimum. Nevertheless, the
gradient of the function is zero at S, i.e. the graph of the function is flat there,
and this justifies our calling it a stationary point. Of course, a point at which the
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gradient of the function is zero but the function rises in the positive x-direction
and falls in the negative x-direction is also a stationary point of inflection.

The above distinction between the three types of stationary point has been
made rather descriptively. However, it is possible to define and distinguish sta-
tionary points mathematically. From their definition as points of zero gradient,
all stationary points must be characterised by df/dx = 0. In the case of the
minimum, B, the slope, i.e. df /dx, changes from negative at 4 to positive at C
through zero at B. Thus df /dx is increasing and so the second derivative d°f /dx?
must be positive. Conversely, at the maximum, Q, we must have that d>f/dx? is
negative.

It is less obvious, but intuitively reasonable, that at S, d>f /dx? is zero. This may
be inferred from the following observations. To the left of S the curve is concave
upwards so that df /dx is increasing with x and hence d*f/dx*> > 0. To the right
of S, however, the curve is concave downwards so that df /dx is decreasing with
x and hence df/dx*> < 0.

In summary, at a stationary point df /dx = 0 and

(i) for a minimum, d*f /dx* > 0,
(ii) for a maximum, d>f/dx*> < 0,

(iii) for a stationary point of inflection, d*f/dx> = 0 and d’f /dx? changes sign
through the point.

In case (iii), a stationary point of inflection, in order that d?f /dx? changes sign
through the point we normally require d*f/dx? # 0 at that point. This simple
rule can fail for some functions, however, and in general if the first non-vanishing
derivative of f(x) at the stationary point is f then if n is even the point is a
maximum or minimum and if » is odd the point is a stationary point of inflection.
This may be seen from the Taylor expansion (see equation (4.17)) of the function
about the stationary point, but it is not proved here.

» Find the positions and natures of the stationary points of the function
f(x) = 2x> — 3x* — 36x + 2.

The first criterion for a stationary point is that df /dx = 0, and hence we set

d
i = 6x> — 6x — 36 =0,
dx
from which we obtain
(x=3)(x+2)=0.
Hence the stationary points are at x = 3 and x = —2. To determine the nature of the
stationary point we must evaluate d>f/dx*:

&f
e 12x — 6.
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Figure 2.3 The graph of a function f(x) that has a general point of inflection
at the point G.

Now, we examine each stationary point in turn. For x = 3, d*f/dx* = 30. Since this is
positive, we conclude that x = 3 is a minimum. Similarly, for x = —2, d>f/dx* = —30 and
s0 x = —2 is a maximum. <

So far we have concentrated on stationary points, which are defined to have
df /dx = 0. We have found that at a stationary point of inflection d>f/dx? is
also zero and changes sign. This naturally leads us to consider points at which
d*f /dx? is zero and changes sign but at which df /dx is not, in general, zero. Such
points are called general points of inflection or simply points of inflection. Clearly,
a stationary point of inflection is a special case for which df /dx is also zero.
At a general point of inflection the graph of the function changes from being
concave upwards to concave downwards (or vice versa), but the tangent to the
curve at this point need not be horizontal. A typical example of a general point
of inflection is shown in figure 2.3.

The determination of the stationary points of a function, together with the
identification of its zeros, infinities and possible asymptotes, is usually sufficient
to enable a graph of the function showing most of its significant features to be
sketched. Some examples for the reader to try are included in the exercises at the
end of this chapter.

2.1.9 Curvature of a function

In the previous section we saw that at a point of inflection of the function
f(x), the second derivative d*>f/dx> changes sign and passes through zero. The
corresponding graph of f shows an inversion of its curvature at the point of
inflection. We now develop a more quantitative measure of the curvature of a
function (or its graph), which is applicable at general points and not just in the
neighbourhood of a point of inflection.

As in figure 2.1, let 6 be the angle made with the x-axis by the tangent at a
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fx)
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Figure 2.4 Two neighbouring tangents to the curve f(x) whose slopes differ
by Af. The angular separation of the corresponding radii of the circle of
curvature is also Af.

point P on the curve f = f(x), with tan § = df /dx evaluated at P. Now consider
also the tangent at a neighbouring point Q on the curve, and suppose that it
makes an angle 6 + A0 with the x-axis, as illustrated in figure 2.4.

It follows that the corresponding normals at P and Q, which are perpendicular
to the respective tangents, also intersect at an angle Af. Furthermore, their point
of intersection, C in the figure, will be the position of the centre of a circle that
approximates the arc PQ, at least to the extent of having the same tangents at
the extremities of the arc. This circle is called the circle of curvature.

For a finite arc PQ, the lengths of CP and CQ will not, in general, be equal,
as they would be if f = f(x) were in fact the equation of a circle. But, as Q
is allowed to tend to P, ie. as A0 — 0, they do become equal, their common
value being p, the radius of the circle, known as the radius of curvature. It follows
immediately that the curve and the circle of curvature have a common tangent
at P and lie on the same side of it. The reciprocal of the radius of curvature, p—',
defines the curvature of the function f(x) at the point P.

The radius of curvature can be defined more mathematically as follows. The
length As of arc PQ is approximately equal to pAf and, in the limit A@ — 0, this
relationship defines p as

As ds

= lim X0~ 30 (2.15)

p

It should be noted that, as s increases, § may increase or decrease according to
whether the curve is locally concave upwards (i.e. shaped as if it were near a
minimum in f(x)) or concave downwards. This is reflected in the sign of p, which
therefore also indicates the position of the curve (and of the circle of curvature)
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relative to the common tangent, above or below. Thus a negative value of p
indicates that the curve is locally concave downwards and that the tangent lies
above the curve.

We next obtain an expression for p, not in terms of s and 6 but in terms
of x and f(x). The expression, though somewhat cumbersome, follows from the
defining equation (2.15), the defining property of 0 that tan6 = df /dx = f’ and
the fact that the rate of change of arc length with x is given by

12
1+ (ﬂ> } . (2.16)
dx

This last result, simply quoted here, is proved more formally in subsection 2.2.13.
From the chain rule (2.11) it follows that

ds

dx

ds ds dx
p=%=aw. (2.17)

Differentiating both sides of tan 0 = df /dx with respect to x gives

o d&*f
287 S p——
sec de s 1,

from which, using sec?d = 1 + tan> @ = 1 + (f')%, we can obtain dx/df as

dx _1+tan?0 14 (/)
e (2.18)

Substituting (2.16) and (2.18) into (2.17) then yields the final expression for p,

1273/2
p= % (2.19)

It should be noted that the quantity in brackets is always positive and that its
three-halves root is also taken as positive. The sign of p is thus solely determined
by that of d?f/dx?, in line with our previous discussion relating the sign to
whether the curve is concave or convex upwards. If, as happens at a point of
inflection, d*f/dx? is zero then p is formally infinite and the curvature of f(x) is
zero. As d*f/dx* changes sign on passing through zero, both the local tangent
and the circle of curvature change from their initial positions to the opposite side
of the curve.
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» Show that the radius of curvature at the point (x,y) on the ellipse
2 2
X
—
a b
has magnitude (a*y® + b*x?)*/?/(a*b*) and the opposite sign to y. Check the special case
b = a, for which the ellipse becomes a circle.

=1

Differentiating the equation of the ellipse with respect to x gives
2 dy
a?  b?dx
and so
dy b

dx aty’
A second differentiation, using (2.13), then yields

dzyffbi y=xy"\ _ b* LZ+L2 _ b*
ax2 @2 2 - a2y’ \ »? ) a2y?’
where we have used the fact that (x, y) lies on the ellipse. We note that d*y/dx?, and hence

p, has the opposite sign to y* and hence to y. Substituting in (2.19) gives for the magnitude
of the radius of curvature

[1+b*x?/(a*y?)] 302
—b*/(a?y?)

For the special case b = a, |p| reduces to a=2(y> + x?)
turn gives |p| = a, as expected. <

(@*)? + b*x2)2
- a*b*

lpl =

32 and, since x> + y?> = 4, this in

The discussion in this section has been confined to the behaviour of curves
that lie in one plane; examples of the application of curvature to the bending of
loaded beams and to particle orbits under the influence of a central forces can be
found in the exercises at the ends of later chapters. A more general treatment of
curvature in three dimensions is given in section 10.3, where a vector approach is
adopted.

2.1.10 Theorems of differentiation

Rolle’s theorem

Rolle’s theorem (figure 2.5) states that if a function f(x) is continuous in the
range a < x < ¢, is differentiable in the range a < x < ¢ and satisfies f(a) = f(c)
then for at least one point x = b, where a < b < ¢, f'(b) = 0. Thus Rolle’s
theorem states that for a well-behaved (continuous and differentiable) function
that has the same value at two points either there is at least one stationary point
between those points or the function is a constant between them. The validity of
the theorem is immediately apparent from figure 2.5 and a full analytic proof will
not be given. The theorem is used in deriving the mean value theorem, which we
now discuss.
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Figure 2.5 The graph of a function f(x), showing that if f(a) = f(c) then at
one point at least between x = a and x = ¢ the graph has zero gradient.

f(x)

Figure 2.6 The graph of a function f(x); at some point x = b it has the same
gradient as the line AC.

Mean value theorem

The mean value theorem (figure 2.6) states that if a function f(x) is continuous
in the range a < x < c and differentiable in the range a < x < ¢ then

iy 1O =1@ (220
c—a

for at least one value b where a < b < ¢. Thus the mean value theorem states
that for a well-behaved function the gradient of the line joining two points on the
curve is equal to the slope of the tangent to the curve for at least one intervening
point.

The proof of the mean value theorem is found by examination of figure 2.6, as
follows. The equation of the line AC is

¢(¥) = f(a@) + (x — ) Q=T

c—a
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and hence the difference between the curve and the line is

hx) = () — g(x) = Fx) — fl@) — (x — o)1 D =T

c—a

Since the curve and the line intersect at A and C, h(x) = 0 at both of these points.
Hence, by an application of Rolle’s theorem, /'(x) = 0 for at least one point b
between A and C. Differentiating our expression for h(x), we find

W = ) - LT,
and hence at b, where I'(x) = 0,
iy =101

Applications of Rolle’s theorem and the mean value theorem

Since the validity of Rolle’s theorem is intuitively obvious, given the conditions
imposed on f(x), it will not be surprising that the problems that can be solved
by applications of the theorem alone are relatively simple ones. Nevertheless we
will illustrate it with the following example.

» What semi-quantitative results can be deduced by applying Rolle’s theorem to the fol-
lowing functions f(x), with a and ¢ chosen so that f(a) = f(c) = 0? (i) sinx, (ii) cosx,
(iii)x? — 3x + 2, (iv) x* + 7x + 3, (v) 2x3 — 9x> — 24x + k.

(i) If the consecutive values of x that make sinx = 0 are ay,0,,... (actually x = nn, for
any integer n) then Rolle’s theorem implies that the derivative of sin x, namely cos x, has
at least one zero lying between each pair of values o; and ;4.

(ii) In an exactly similar way, we conclude that the derivative of cos x, namely —sin x,
has at least one zero lying between consecutive pairs of zeros of cosx. These two re-
sults taken together (but neither separately) imply that sinx and cosx have interleaving
Zeros.

(i) For f(x) = x> —3x+2, f(a) = f(c) = 0 if a and c are taken as 1 and 2 respectively.
Rolle’s theorem then implies that f'(x) = 2x — 3 = 0 has a solution x = b with b in the
range 1 < b < 2. This is obviously so, since b = 3/2.

(iv) With f(x) = x> + 7x + 3, the theorem tells us that if there are two roots of
x2 4+ 7x 4+ 3 = 0 then they have the root of f'(x) = 2x + 7 = 0 lying between them. Thus if
there are any (real) roots of x> 4+ 7x + 3 = 0 then they lie one on either side of x = —7/2.
The actual roots are (—7 + /37)/2.

(v) If f(x) = 2x* — 9x? — 24x + k then f’(x) = 0 is the equation 6x> — 18x — 24 = 0,
which has solutions x = —1 and x = 4. Consequently, if «; and o, are two different roots
of f(x) = 0 then at least one of —1 and 4 must lie in the open interval o to op. If, as is
the case for a certain range of values of k, f(x) = 0 has three roots, a,a, and «3, then
u<—-l<om<d<os.
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In each case, as might be expected, the application of Rolle’s theorem does no more than
focus attention on particular ranges of values; it does not yield precise answers. <

Direct verification of the mean value theorem is straightforward when it is
applied to simple functions. For example, if f(x) = x?, it states that there is a
value b in the interval a < b < ¢ such that

& —a* = f(e)— fla) = (c — a)f'(b) = (c — a)2b.

This is clearly so, since b = (a + ¢)/2 satisfies the relevant criteria.

As a slightly more complicated example we may consider a cubic equation, say
f(x) = x* +2x> 4 4x — 6 = 0, between two specified values of x, say 1 and 2. In
this case we need to verify that there is a value of x lying in the range 1 < x < 2
that satisfies

18—1=1(2)—f(1) = (2 —1)f'(x) = 13x> + 4x + 4).

This is easily done, either by evaluating 3x>+4x+4—17 at x = 1 and at x = 2 and
checking that the values have opposite signs or by solving 3x> +4x+4—17=0
and showing that one of the roots lies in the stated interval.

The following applications of the mean value theorem establish some general
inequalities for two common functions.

» Determine inequalities satisfied by In x and sin x for suitable ranges of the real variable x.

Since for positive values of its argument the derivative of Inx is x~!

theorem gives us

, the mean value

Inc—Ina 1

c—a b

for some b in 0 < a < b < c. Further, since a < b < ¢ implies that ¢! < b~™! < a7,

have

we

1 Inc—Ina 1
—_ <,
¢ c—a a

or, multiplying through by ¢ — a and writing ¢/a = x where x > 1,
1
l——<Ihx<x-—1
X

Applying the mean value theorem to sin x shows that

sinc — sina
———— =cosbh

c—a
for some b lying between a and ¢. If @ and ¢ are restricted to lie in the range 0 < a < ¢ < =,
in which the cosine function is monotonically decreasing (i.e. there are no turning points),
we can deduce that

sinc —sina

cosc < — < cosa. 4
- —a
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fx)

Figure 2.7 An integral as the area under a curve.

2.2 Integration

The notion of an integral as the area under a curve will be familiar to the reader.
In figure 2.7, in which the solid line is a plot of a function f(x), the shaded area
represents the quantity denoted by

1= /b f(x)dx. (2.21)

This expression is known as the definite integral of f(x) between the lower limit
x = a and the upper limit x = b, and f(x) is called the integrand.

2.2.1 Integration from first principles

The definition of an integral as the area under a curve is not a formal definition,
but one that can be readily visualised. The formal definition of I involves
subdividing the finite interval ¢ < x < b into a large number of subintervals, by
defining intermediate points &; such that a = &y < & <& < --- < &, = b, and
then forming the sum

S = f(xi)& — &), (222)
i=1

where x; is an arbitrary point that lies in the range &, < x; < &; (see figure 2.8).
If now n is allowed to tend to infinity in any way whatsoever, subject only to the
restriction that the length of every subinterval &, to &; tends to zero, then S
might, or might not, tend to a unique limit, I. If it does then the definite integral
of f(x) between a and b is defined as having the value I. If no unique limit exists
the integral is undefined. For continuous functions and a finite interval a < x < b
the existence of a unique limit is assured and the integral is guaranteed to exist.
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Figure 2.8 The evaluation of a definite integral by subdividing the interval
a < x < b into subintervals.

» Evaluate from first principles the integral I = fob x2 dx.

We first approximate the area under the curve y = x?> between 0 and b by n rectangles of
equal width h. If we take the value at the lower end of each subinterval (in the limit of an
infinite number of subintervals we could equally well have chosen the value at the upper
end) to give the height of the corresponding rectangle, then the area of the kth rectangle
will be (kh)*h = k*h*. The total area is thus

n—1

A=Y KR = ()in(n—1)2n—1),
k=0

where we have used the expression for the sum of the squares of the natural numbers
derived in subsection 1.7.1. Now h = b/n and so

b\ n b 1 1
A= (F) gn—Dn-1=% (1_E> <z—;>.

As n — o0, A — b*/3, which is thus the value I of the integral. <

Some straightforward properties of definite integrals that are almost self-evident
are as follows:

b a
/ 0dx =0, / f(x)dx =0, (2.23)
¢ b c
‘(x)dx = (x)d (x) dx, 2.24
[ 1eas= [Cgewas+ [ roas (2.24)
b b b
/[f(x)+g(x)]dx=/ f(x)dx+/ g(x)dx. (2.25)
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Combining (2.23) and (2.24) with ¢ set equal to a shows that

b a
/ f(x)dx = —/ f(x)dx. (2.26)
a b

2.2.2 Integration as the inverse of differentiation

The definite integral has been defined as the area under a curve between two
fixed limits. Let us now consider the integral

F(x) = /X f(u)du (2.27)

in which the lower limit a remains fixed but the upper limit x is now variable. It
will be noticed that this is essentially a restatement of (2.21), but that the variable
x in the integrand has been replaced by a new variable u. It is conventional to
rename the dummy variable in the integrand in this way in order that the same
variable does not appear in both the integrand and the integration limits.

It is apparent from (2.27) that F(x) is a continuous function of x, but at first
glance the definition of an integral as the area under a curve does not connect with
our assertion that integration is the inverse process to differentiation. However,
by considering the integral (2.27) and using the elementary property (2.24), we
obtain

F(x + Ax) = /X+Ax f(u)du

a

-/ " fdu+ / "

x+Ax
= F(x)+/ f(u)du.
Rearranging and dividing through by Ax yields
F(x+Ax)—F(x) 1 /*MX _
Ax T Ax J, f(w) du.

Letting Ax — 0 and using (2.1) we find that the LHS becomes dF /dx, whereas
the RHS becomes f(x). The latter conclusion follows because when Ax is small
the value of the integral on the RHS is approximately f(x)Ax, and in the limit
Ax — 0 no approximation is involved. Thus

dz(x) = f(x), (2.28)
X

or, substituting for F(x) from (2.27),

* [ / ) du} — f(x).
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From the last two equations it is clear that integration can be considered as
the inverse of differentiation. However, we see from the above analysis that the
lower limit a is arbitrary and so differentiation does not have a unique inverse.
Any function F(x) obeying (2.28) is called an indefinite integral of f(x), though
any two such functions can differ by at most an arbitrary additive constant. Since
the lower limit is arbitrary, it is usual to write

F(x) = / ’ £(u) du (2.29)

and explicitly include the arbitrary constant only when evaluating F(x). The
evaluation is conventionally written in the form

/ f(x)dx =F(x)+c (2.30)

where c is called the constant of integration. It will be noticed that, in the absence
of any integration limits, we use the same symbol for the arguments of both f
and F. This can be confusing, but is sufficiently common practice that the reader
needs to become familiar with it.

We also note that the definite integral of f(x) between the fixed limits x = a
and x = b can be written in terms of F(x). From (2.27) we have

/f )dx = xof(xdxf/f

= F(b) — (2.31)

where xo is any third fixed point. Using the notation F'(x) = dF/dx, we may
rewrite (2.28) as F'(x) = f(x), and so express (2.31) as

/ ' F'(x)dx = F(b) — F(a) = [F]%.

In contrast to differentiation, where repeated applications of the product rule
and/or the chain rule will always give the required derivative, it is not always
possible to find the integral of an arbitrary function. Indeed, in most real phys-
ical problems exact integration cannot be performed and we have to revert to
numerical approximations. Despite this cautionary note, it is in fact possible to
integrate many simple functions and the following subsections introduce the most
common types. Many of the techniques will be familiar to the reader and so are
summarised by example.

2.2.3 Integration by inspection

The simplest method of integrating a function is by inspection. Some of the more
elementary functions have well-known integrals that should be remembered. The
reader will notice that these integrals are precisely the inverses of the derivatives
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found near the end of subsection 2.1.1. A few are presented below, using the form
given in (2.30):

g g aanrI
n
/adx=ax+c, /ax dx = +c,

n+1
ax e(lX "~ a
edx=—+c¢, —dx=ualnx+c,
a X
asin bx . —acos bx
acosbxdx = b +c, asmbxdx=T+c,
—aln(cos bx) asin™ ! bx

/ atanbxdx = +c, /a cos bx sin” bx dx = +c,

b b(n+ 1)

_ n+1
/ﬁai)cztan*1 (g) +c, /asinbxcos”bxdx= %+c,

— —1 (X
X = COS X = sin — ) +ec,
a

-1 b " 1
/ \/a2—x2d (5> o / \/az—xzd
where the integrals that depend on n are valid for all n # —1 and where a and b
are constants. In the two final results |x| < a.

2.2.4 Integration of sinusoidal functions

Integrals of the type [ sin” xdx and [ cos" xdx may be found by using trigono-
metric expansions. Two methods are applicable, one for odd n and the other for
even n. They are best illustrated by example.

» Evaluate the integral I = fsinsxdx.

Rewriting the integral as a product of sinx and an even power of sinx, and then using
the relation sin? x = 1 — cos? x yields

I = /sinAxsinxdx
:/(l—coszx)zsinxdx
:/(1—2c052x+cos4x)sinxdx

= /(sinx—2sinxcoszx+sinxcosAx)dx
— 2 and3 1ands .
= —C0SXx+ 3CO8" X — 5CO08" X+,

where the integration has been carried out using the results of subsection 2.2.3. «
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» Evaluate the integral I = [ cos* x dx.

Rewriting the integral as a power of cos’x and then using the double-angle formula
cos? x = 1(1 + cos2x) yields

2 w2 14 cos2x\?
I = [ (cos”x) dx = — dx

= / 1(1 4+ 2 cos 2x + cos? 2x) dx.
Using the double-angle formula again we may write cos? 2x = %(1 + cos4x), and hence

I

/ [§+ 3 cos2x + §(1 +cos4x)] dx

_1 1 1 1 .
=X+ 38in2x+ gx + 55 sindx + ¢

_3e 1 1o ,
=X+ ;sin2x + 53 sindx +c. «

2.2.5 Logarithmic integration

Integrals for which the integrand may be written as a fraction in which the
numerator is the derivative of the denominator may be evaluated using
f'x)
J f(x)
This follows directly from the differentiation of a logarithm as a function of a
function (see subsection 2.1.3).

dx =Inf(x)+c. (2.32)

» Evaluate the integral

2
I=/6x3+2'cosxdx
X° +smnx

We note first that the numerator can be factorised to give 2(3x? + cosx), and then that
the quantity in brackets is the derivative of the denominator. Hence

2
I:Z/de=2ln(x3+sinx)+c.<
x> + s x

2.2.6 Integration using partial fractions

The method of partial fractions was discussed at some length in section 1.4, but
in essence consists of the manipulation of a fraction (here the integrand) in such
a way that it can be written as the sum of two or more simpler fractions. Again
we illustrate the method by an example.
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» Evaluate the integral
1
I= / ST dx
x*+x
We note that the denominator factorises to give x(x + 1). Hence

1
I=/mdx.

We now separate the fraction into two partial fractions and integrate directly:

1 1 X
I = - —Inx—In(x+D+c=1In| > x|
/(\ x+1> dx=Inx—In(x+1)+c n<x+1>+(

2.2.7 Integration by substitution

Sometimes it is possible to make a substitution of variables that turns a com-
plicated integral into a simpler one, which can then be integrated by a standard
method. There are many useful substitutions and knowing which to use is a matter
of experience. We now present a few examples of particularly useful substitutions.

» Evaluate the integral

1
I = —dx.
/mx

Making the substitution x = sinu, we note that dx = cosudu, and hence

du =u+c.

1 1
1= / ————cosudu = / ————cosudu =/
V1 —sin’u Jeos?u
Now substituting back for u,

I =sin"'x+ec.

This corresponds to one of the results given in subsection 2.2.3. «

Another particular example of integration by substitution is afforded by inte-
grals of the form

! 1
’=./md" or ’f/mdx. (2.33)

In these cases, making the substitution t = tan(x/2) yields integrals that can
be solved more easily than the originals. Formulae expressing sinx and cos x in
terms of ¢ were derived in equations (1.32) and (1.33) (see p. 14), but before we
can use them we must relate dx to dt as follows.
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Since
dt 1 ,x 1 5 X 1+¢
o2 2 =21 ) =
dx 2592 2<+“m Q 2
the required relationship is
dx = 2 dt (2.34)
YT +2 ’

» Evaluate the integral

2
I=| ——d
/1+3cosx x

Rewriting cos x in terms of ¢ and using (2.34) yields

2 2
I=/1+3ﬁanu+ﬁrq<1+ﬂ>m
~ 21+ 1) 2y,
_/1+ﬂ+ﬂ1—m<1+ﬂ>”

2 2
‘/27r2dt_/(ﬁ—t>(ﬁ+t)dt

A )

) L2\t 2+t

1 1
ﬁln(ﬁ—t)+ﬁln(\/§+t)+c
_ 1 \/§+tan(x/2)} te

T Va2

Integrals of a similar form to (2.33), but involving sin 2x, cos 2x, tan 2x, sin? X,

cos>x or tan®x instead of cosx and sinx, should be evaluated by using the
substitution ¢t = tan x. In this case

t 1 dt
cosx = and dx

JI+e 1+2 Tt

sinx = (2.35)

A final example of the evaluation of integrals using substitution is the method
of completing the square (cf. subsection 1.7.3).
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» Evaluate the integral

—/ ! dx
) X2 4Ax+T

We can write the integral in the form

_ / L
) (x+22+37
Substituting y = x + 2, we find dy = dx and hence

1
I=[| ———d
/y2+3 Y,

Hence, by comparison with the table of standard integrals (see subsection 2.2.3)

I=£tan’l <L> +c=£tan’l <x+2> +c <
3 NG 3 NE

2.2.8 Integration by parts

Integration by parts is the integration analogy of product differentiation. The
principle is to break down a complicated function into two functions, at least one
of which can be integrated by inspection. The method in fact relies on the result
for the differentiation of a product. Recalling from (2.6) that

i(uv)—udv duv
T dx dx

dx
where u and v are functions of x, we now integrate to find

uy = u—d —I—/—de

Rearranging into the standard form for integration by parts gives

dv du
/udx dx = uv — / o dx. (2.36)

Integration by parts is often remembered for practical purposes in the form
the integral of a product of two functions is equal to {the first times the integral of
the second} minus the integral of {the derivative of the first times the integral of
the second}. Here, u is ‘the first’ and dv/dx is ‘the second’; clearly the integral v
of ‘the second’ must be determinable by inspection.

| » Evaluate the integral I = [ x sinx dx. |

In the notation given above, we identify x with u and sin x with dv/dx. Hence v = —cos x
and du/dx = 1 and so using (2.36)

1= x(—cosx)—/(l)(—cosx)dx = —XCcosXx +sinx +c. €
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The separation of the functions is not always so apparent, as is illustrated by
the following example.

» Evaluate the integral I = [ x*¢ dx.

Firstly we rewrite the integral as

1= /x2 (xe"'z> dx.

Now, using the notation given above, we identify x*> with u and xe™* with dv/dx. Hence
v=—1e and du/dx = 2x, so that
2

I =12 _ (fx)e”‘z dx = —ix2e™ _ 1o +c <
=73 X =73 2 -

A trick that is sometimes useful is to take ‘1’ as one factor of the product, as
is illustrated by the following example.

» Evaluate the integral I = [ Inxdx.

Firstly we rewrite the integral as

I= /(lnx)ldx.

Now, using the notation above, we identify In x with u and 1 with dv/dx. Hence we have
v=x and du/dx = 1/x, and so

1 =(1nx)(x)f/ <§> xdx=xlnx—x+c «

It is sometimes necessary to integrate by parts more than once. In doing so,
we may occasionally re-encounter the original integral I. In such cases we can
obtain a linear algebraic equation for I that can be solved to obtain its value.

» Evaluate the integral I = [ e* cos bx dx.

ax

Integrating by parts, taking ¢** as the first function, we find

o [ sinbx u [ sinbx
I—e<b> /ae<h>dx,

where, for convenience, we have omitted the constant of integration. Integrating by parts
a second time,

u [ Sinbx u [ —cosbx 5 ax [ —COSbx
I:e<b>—ae< ) >+/ae< b >dx.

Notice that the integral on the RHS is just —a?/b? times the original integral I. Thus

w1 a a
I=¢ (Emnbx-s—ﬁcosbx)—ﬁl.

68



2.2 INTEGRATION

Rearranging this expression to obtain I explicitly and including the constant of integration
we find

ax
a’ + b?
Another method of evaluating this integral, using the exponential of a complex number,
is given in section 3.6. <

I= (bsinbx + acos bx) + c. (2.37)

2.2.9 Reduction formulae

Integration using reduction formulae is a process that involves first evaluating a
simple integral and then, in stages, using it to find a more complicated integral.

» Using integration by parts, find a relationship between I, and I,_, where

1
15 :/ (1 —x*)"dx
0

and n is any positive integer. Hence evaluate I, = fo](l —x3)?dx.

Writing the integrand as a product and separating the integral into two we find

1
I, = / 1 —=x)(1 —x%)dx
0

1 1
=/ (17x3)""dx7/ (1 —x3)"dx.
0 0

The first term on the RHS is clearly I,,_; and so, writing the integrand in the second term
on the RHS as a product,

1
In = In—l _/ (x)x2(1 - x})n—l dx.
0

Integrating by parts we find

X 1 1
L=I_i+ [ﬂ(l—xﬂ"]o—/o S (=X

1
- In—l +0_ Elm
which on rearranging gives
~ 3n
T 3n41

We now have a relation connecting successive integrals. Hence, if we can evaluate I, we
can find Iy, I, etc. Evaluating I, is trivial:

1 1
IU=/ (1—x3)°dx=/ dx=[x](1)=1‘
0 0

n n—1-

Hence
3x1) 3 3x2) 3
=20 x1=2, L=-—""20 2 .
T BxD+1 N T4 2T Ex)+1 3" 14
Although the first few I, could be evaluated by direct multiplication, this becomes tedious
for integrals containing higher values of n; these are therefore best evaluated using the
reduction formula. <

9
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2.2.10 Infinite and improper integrals

The definition of an integral given previously does not allow for cases in which
either of the limits of integration is infinite (an infinite integral) or for cases
in which f(x) is infinite in some part of the range (an improper integral), e.g.
f(x) = (2 —x)"Y* near the point x = 2. Nevertheless, modification of the
definition of an integral gives infinite and improper integrals each a meaning.

In the case of an integral I = fab f(x)dx, the infinite integral, in which b tends
to oo, is defined by

0 b
I=/a f(x)dx=bli_1330/a f(x)dx=&£niF(b)—F(a).

As previously, F(x) is the indefinite integral of f(x) and lim,_, F(b) means the
limit (or value) that F(b) approaches as b — oo; it is evaluated after calculating
the integral. The formal concept of a limit will be introduced in chapter 4.

* X
1=

Integrating, we find F(x) = —3(x? 4+ 4*)~' 4 ¢ and so
—1 —1 1
|- (35| =55 <
2(b? + az)} ( 2a% > 2a?
For the case of improper integrals, we adopt the approach of excluding the

unbounded range from the integral. For example, if the integrand f(x) is infinite
at x = c (say), a < ¢ < b then

» Evaluate the integral

I = lim
b—oo

b o b
/a f(x)dx = yi%/u fx)dx + l% - f(x)dx.

» Evaluate the integral I = f02(2 —x) 4 dx.

Integrating directly,

I = leo [_%(2 _ X)I‘;/4](2)7é — £Lm0 [—%63/4] + %23/4 — (%) 23/4 4

2.2.11 Integration in plane polar coordinates

In plane polar coordinates p, ¢, a curve is defined by its distance p from the
origin as a function of the angle ¢ between the line joining a point on the curve
to the origin and the x-axis, i.e. p = p(¢). The area of an element is given by
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d
P+ dg) pae

o
X

Figure 2.9 Finding the area of a sector OBC defined by the curve p(¢) and
the radii OB, OC, at angles to the x-axis ¢, ¢, respectively.

dA = %pz d¢, as illustrated in figure 2.9, and hence the total area between two
angles ¢ and ¢, is given by

$2
A= / 1p*dée. (2.38)
1
An immediate observation is that the area of a circle of radius a is given by

2n
- 2n
A= /0 la*dp = [%azﬂo = nd’.

» The equation in polar coordinates of an ellipse with semi-axes a and b is

1 2 )
_ cos ¢+s1n d)'

02 2 b2
Find the area A of the ellipse.

Using (2.38) and symmetry, we have

1 2n 2b2 /2 1

> “—.2d¢=2a2b2/ ———d
2 Jo b2cos? ¢ + a¥sin” ¢ o b2cos? P+ a’sin” ¢

To evaluate this integral we write ¢t = tan ¢ and use (2.35):

o [ gl [
a Pt ar a2t2 (b/a Grarse?

Finally, from the list of standard integrals (see subsection 2.2.3),

_ ) (T o) =
e [(b/a an (b/a)]o—Zab(z 0)—nab.<

A=
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2.2.12 Integral inequalities

Consider the functions f(x), ¢1(x) and ¢»(x) such that ¢;(x) < f(x) < ¢a(x) for
all x in the range a < x < b. It immediately follows that

b b b
/ d1(x)dx < / f(x)dx < / $(x) dx, (2.39)

which gives us a way of estimating an integral that is difficult to evaluate explicitly.

» Show that the value of the integral

_ /‘ 1 o
CJo (L4242
lies between 0.810 and 0.882.

We note that for x in the range 0 < x < 1, 0 < x> < x%. Hence
(1 +X2)1/2 < (1 +x2+x3)1/2 < (1 +2x2)1/2’

and so
1 - 1 - 1
T+ = A+ +0)72 = (1 +2x2)72

Consequently,

[t e [t e [
——dx —_———dx ——dx
o (14+xH)7277 7 Jo (T+x2+x3)17277 7 o (142x)2 77
from which we obtain
I | 1
[ln(x—s—\/l—i-xz)]ozlz{%ln(x-i- %—i—xz)}

0.8814 > I > 0.8105
0.882 > 1 > 0.810.

In the last line the calculated values have been rounded to three significant figures,
one rounded up and the other rounded down so that the proved inequality cannot be
unknowingly made invalid. <

2.2.13 Applications of integration

Mean value of a function

The mean value m of a function between two limits @ and b is defined by

b
m= b i P / f(x)dx. (2.40)

The mean value may be thought of as the height of the rectangle that has the
same area (over the same interval) as the area under the curve f(x). This is
illustrated in figure 2.10.
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fx)

Figure 2.10 The mean value m of a function.

» Find the mean value m of the function f(x) = x> between the limits x = 2 and x = 4.

Using (2.40),

(R 137" 1
m=4 zxd'*—iH =3

Finding the length of a curve

Finding the area between a curve and certain straight lines provides one example
of the use of integration. Another is in finding the length of a curve. If a curve
is defined by y = f(x) then the distance along the curve, As, that corresponds to
small changes Ax and Ay in x and y is given by

As ~ V(AP + (Ay); (2.41)

this follows directly from Pythagoras’ theorem (see figure 2.11). Dividing (2.41)
through by Ax and letting Ax — 0 we obtain’

ds dy 2

— =4/1 — .

dx + (dx)
Clearly the total length s of the curve between the points x = a and x = b is then
given by integrating both sides of the equation:

b 2
s=/ q/1+(j—f€> dx. (2.42)

§ Instead of considering small changes Ax and Ay and letting these tend to zero, we could have
derived (2.41) by considering infinitesimal changes dx and dy from the start. After writing (ds)?> =
(dx)*+(dy)?, (2.41) may be deduced by using the formal device of dividing through by dx. Although
not mathematically rigorous, this method is often used and generally leads to the correct result.
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As A y
Ax

RY

Figure 2.11 The distance moved along a curve, As, corresponding to the
small changes Ax and Ay.

In plane polar coordinates,

] 2
ds = (d}~)2 =+ (7‘ d¢)2 = s = / 142 (dd_d)) dr.
(2.43)

r r

|>Find the length of the curve y = x*/* from x = 0 to x = 2. |

Using (2.42) and noting that dy/dx = %\/}, the length s of the curve is given by

Surfaces of revolution

Consider the surface S formed by rotating the curve y = f(x) about the x-axis
(see figure 2.12). The surface area of the ‘collar’ formed by rotating an element
of the curve, ds, about the x-axis is 2my ds, and hence the total surface area is

b
S=/ 2ny ds.
a

Since (ds)? = (dx)?> + (dy)? from (2.41), the total surface area between the planes

x=aand x=0>bis
b d 2
s =/a 2nyy[1+ (%) dx. (2.44)
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Figure 2.12 The surface and volume of revolution for the curve y = f(x).

» Find the surface area of a cone formed by rotating about the x-axis the line y = 2x
between x =0 and x = h.

Using (2.44), the surface area is given by

2

h
S:/ (2m)2x4 /1 + {i(Zx)} dx
0 dx
h h
:/ dnx (14222 dx:/ 4S5 dx
0 0

= {2\6”2]2 = 2./5n(h? — 0) = 2/3nh%. <

We note that a surface of revolution may also be formed by rotating a line
about the y-axis. In this case the surface area between y =a and y = b is

b dx\?
S =/ 2nxy [ 1+ (—) dy. (2.45)
a dy

Volumes of revolution

The volume V' enclosed by rotating the curve y = f(x) about the x-axis can also
be found (see figure 2.12). The volume of the disc between x and x + dx is given
by dV = ny?dx. Hence the total volume between x = a and x = b is

b
V= / ny? dx. (2.46)
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» Find the volume of a cone enclosed by the surface formed by rotating about the x-axis
the line y = 2x between x =0 and x = h.

Using (2.46), the volume is given by

h h
V= / n(2x)* dx = / 4nx? dx
0 0

= [4nx’]y = dn(h’ — 0) = dah’. «

As before, it is also possible to form a volume of revolution by rotating a curve
about the y-axis. In this case the volume enclosed between y =a and y = b is

b
V= / nx? dy. (2.47)

2.3 Exercises
2.1 Obtain the following derivatives from first principles:

(a) the first derivative of 3x + 4;
(b) the first, second and third derivatives of x* + x;
(c) the first derivative of sin x.

22 Find from first principles the first derivative of (x +3)? and compare your answer
with that obtained using the chain rule.
2.3 Find the first derivatives of

(a) x?expx, (b) 2sinxcosx, (c) sin2x, (d) xsin ax,
(e) (expax)(sinax)tan~' ax, (f) In(x* + x™),
(g) In(a*+a™), (h) x*.

24 Find the first derivatives of

(a) x/(a+x)* (b) x/(1—x)"2, (c) tanx, as sin x/ cos x,
(d) (3x2+2x + 1)/(8x2 — 4x + 2).

2.5 Use result (2.12) to find the first derivatives of
(a) (2x+3)73, (b) sec?x, (c) cosech’3x, (d) 1/Inx, (e) 1/[sin"!(x/a)].
2.6 Show that the function y(x) = exp(—|x|) defined by

exp x for x <0,
yx)=41 for x =0,
exp(—x) for x>0,

is not differentiable at x = 0. Consider the limiting process for both Ax > 0 and
Ax <0.

2.7 Find dy/dx if x = (t —2)/(t +2) and y = 2t/(t + 1) for —o0 < t < o0. Show that
it is always non-negative, and make use of this result in sketching the curve of y
as a function of x.

28 If 2y +siny + 5 = x* + 4x3 + 2=, show that dy/dx = 16 when x = 1.

29 Find the second derivative of y(x) = cos[(n/2) — ax]. Now set a = 1 and verify
that the result is the same as that obtained by first setting a = 1 and simplifying
y(x) before differentiating.
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2.10

2.11

2.12

2.13
2.14

2.15

2.16

2.17

2.18

2.19

The function y(x) is defined by y(x) = (1 4+ x™)".

(a) Use the chain rule to show that the first derivative of y is nmx"~!(1 4+ x")""".

(b) The binomial expansion (see section 1.5) of (1 4 z)" is
—1 —1)-(n— 1
(1+z)”=1+n2+%22+.”+n(n ) '(n r+ )ZV+..._
! r!
Keeping only the terms of zeroth and first order in dx, apply this result twice
to derive result (a) from first principles.
(c) Expand y in a series of powers of x before differentiating term by term.

Show that the result is the series obtained by expanding the answer given
for dy/dx in (a).

Show by differentiation and substitution that the differential equation

d*y dy
4x*—= —dx—= + (4x7 =
X xdx+(x+3)y 0
has a solution of the form y(x) = x"sin x, and find the value of n.

Find the positions and natures of the stationary points of the following functions:

(a) x*—3x+43;(b) x> —3x2+3x; (c) x* +3x+3;
(d) sinax with a # 0; (e) x° + x3; (f) x* — x°.

Show that the lowest value taken by the function 3x* + 4x3 — 12x? + 6 is —26.
By finding their stationary points and examining their general forms, determine
the range of values that each of the following functions y(x) can take. In each
case make a sketch-graph incorporating the features you have identified.

(@) y(x)=(x—1)/(x*+2x +6).
(b) y(x)=1/(4+3x—x?).
(c) y(x) = (8sinx)/(15 + 8tan®x).

Show that y(x) = xa**exp x*> has no stationary points other than x = 0, if

exp(—+/2) < a < exp(+/2).

The curve 4y3 = a?(x + 3y) can be parameterised as x = acos 30, y = acos0.

(a) Obtain expressions for dy/dx (i) by implicit differentiation and (ii) in param-
eterised form. Verify that they are equivalent.

(b) Show that the only point of inflection occurs at the origin. Is it a stationary
point of inflection?

(c) Use the information gained in (a) and (b) to sketch the curve, paying
particular attention to its shape near the points (—a,a/2) and (a,—a/2) and
to its slope at the ‘end points’ (a,a) and (—a, —a).

The parametric equations for the motion of a charged particle released from rest
in electric and magnetic fields at right angles to each other take the forms

x = a(0 —sin0), y =a(l —cos0).

Show that the tangent to the curve has slope cot(6/2). Use this result at a few
calculated values of x and y to sketch the form of the particle’s trajectory.

Show that the maximum curvature on the catenary y(x) = acosh(x/a) is 1/a. You
will need some of the results about hyperbolic functions stated in subsection 3.7.6.
The curve whose equation is x*? + y** = a3 for positive x and y and which
is completed by its symmetric reflections in both axes is known as an astroid.
Sketch it and show that its radius of curvature in the first quadrant is 3(axy)'/>.
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2.20

2.21

222

2.23

224

2.25

Figure 2.13 The coordinate system described in exercise 2.20.

A two-dimensional coordinate system useful for orbit problems is the tangential-
polar coordinate system (figure 2.13). In this system a curve is defined by r, the
distance from a fixed point O to a general point P of the curve, and p, the
perpendicular distance from O to the tangent to the curve at P. By proceeding
as indicated below, show that the radius of curvature, p, at P can be written in
the form p = rdr/dp.

Consider two neighbouring points, P and Q, on the curve. The normals to the
curve through those points meet at C, with (in the limit Q — P) CP = CQ = p.
Apply the cosine rule to triangles OPC and OQC to obtain two expressions for
¢?, one in terms of r and p and the other in terms of r + Ar and p + Ap. By
equating them and letting Q — P deduce the stated result.

Use Leibnitz’ theorem to find

(a) the second derivative of cos x sin 2x,
(b) the third derivative of sin xInx,
(c) the fourth derivative of (2x* + 3x? + x + 2) exp 2x.

If y = exp(—x?), show that dy/dx = —2xy and hence, by applying Leibnitz’
theorem, prove that for n > 1

YD L oxy™ 4 opy=b = 0,
Use the properties of functions at their turning points to do the following:

(a) By considering its properties near x = 1, show that f(x) = 5x* — 11x* +
26x% — 44x + 24 takes negative values for some range of x.

(b) Show that f(x) = tan x — x cannot be negative for 0 < x < n/2, and deduce
that g(x) = x~! sin x decreases monotonically in the same range.

Determine what can be learned from applying Rolle’s theorem to the following
functions f(x): (a) e*; (b) x* + 6x; (c) 2x* + 3x + 1; (d) 2x> + 3x + 2; (e)
2x3 — 21x% 4 60x + k. (f) If k = —45 in (e), show that x = 3 is one root of
f(x) = 0, find the other roots, and verify that the conclusions from (e) are
satisfied.

By applying Rolle’s theorem to x" sinnx, where n is an arbitrary positive integer,
show that tannx + x = 0 has a solution o; with 0 < o; < n/n. Apply the
theorem a second time to obtain the nonsensical result that there is a real «, in
0 < oy < m/n, such that cos?(nuy) = —n. Explain why this incorrect result arises.
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2.3 EXERCISES

2.26

2.27

2.28

2.29
2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

Use the mean value theorem to establish bounds in the following cases.

(a) For —In(1 — y), by considering Inx in the range 0 <1 —y <x < 1.
(b) For ¢¥ — 1, by considering ¢* — 1 in the range 0 < x < y.

For the function y(x) = x?exp(—x) obtain a simple relationship between y and
dy/dx and then, by applying Leibnitz’ theorem, prove that

xy" ) b (n 4 x = 2)y™ 4+ nyH = 0.

Use Rolle’s theorem to deduce that, if the equation f(x) = 0 has a repeated root
x1, then x; is also a root of the equation f’(x) =

(a) Apply this result to the ‘standard’ quadratic equation ax?> + bx + ¢ = 0, to
show that a necessary condition for equal roots is b* = 4ac.

(b) Find all the roots of f(x) = x* + 4x?> — 3x — 18 = 0, given that one of them
is a repeated root.

(c) The equation f(x) = x*+4x* +7x> + 6x+2 = 0 has a repeated integer root.
How many real roots does it have altogether?

Show that the curve x> 4+ y* — 12x — 8y — 16 = 0 touches the x-axis.
Find the following indefinite integrals:

) J(4+x>)7"dx; (b) [(8+2x —x?)"2dx for 2<x<4;
() f(1+5sin0)7'do; (d) [(x/T—x)"dx for 0<x<1
Find the indefinite integrals J of the following ratios of polynomials:
(a) (x+3)/ X2+ x—2);
(b) (x*+5x>+8x + 12)/(2x2 + 10x + 12);
(€) (3x*420x +28)/(x* + 6x +9);
(d) x3/(a® + x%).

Express x*(ax+b)~" as the sum of powers of x and another integrable term, and

hence evaluate
b/a 2
X
/ ——dx.
o ax+b

Find the integral J of (ax? + bx + ¢)~!, with a # 0, distinguishing between the
cases (i) b* > 4dac, (i) b* < 4ac and (iii) b> = 4ac.
Use logarithmic integration to find the indefinite integrals J of the following:

(a) sin2x/(1 +4sin’x);

(b) e*/(e* —e™);

() (I1+xInx)/(xInx);

(d) [x(x"+am]".

Find the derivative of f(x) = (1+sinx)/cos x and hence determine the indefinite
integral J of sec x.

Find the indefinite integrals, J, of the following functions involving sinusoids:
(a) cos®x — cos’ x;

(b) (1 —cosx)/(1+cosx);

(c) cosxsinx/(1+ cosx);

(d) sec’x/(1 — tan®x).

By making the substitution x = acos? 0 4 bsin® 0, evaluate the definite integrals
J between limits a and b (> a) of the following functions:

(@) [(x—=a)b—x)]"
(b) [(x—a)(b—x)]"?;
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2.38

2.39

2.40

241

242

243

2.44

(© [(x—a)/(b—x)]".

Determine whether the following integrals exist and, where they do, evaluate
them:

(a)/0 exp(—Ax)dx; (b) lFmdx;
1

“ 1
(c)/] v (d)/ox_zdx’

/2 1 X
(e)/0 cotfdo; (f)/o mdx.

Use integration by parts to evaluate the following:

y v
(a)/ x%sin x dx; (b)/ xInxdx;
0 1

v v
(c) / sin!xdx;  (d) / In(a® 4+ x?)/x* dx.
0 1
Show, using the following methods, that the indefinite integral of x*/(x + 1)"/? is
J=2Z(5x —6x?+8x —16)(x + /> +c.

(a) Repeated integration by parts.
(b) Setting x + 1 = u? and determining dJ /du as (dJ /dx)(dx/du).

The gamma function I'(n) is defined for all n > —1 by
0
I'n+1)= / x"e " dx.
0

Find a recurrence relation connecting I'(n + 1) and I'(n).

(a) Deduce (i) the value of I'(n + 1) when n is a non-negative integer, and (ii)
the value of T (), given that T' (1) = /x.
(b) Now, taking factorial m for any m to be defined by m! = I'(m + 1), evaluate

(=3t

Define J(m, n), for non-negative integers m and n, by the integral
/2
J(m,n) = / cos” 0'sin" 6 d6.
0

(a) Evaluate J(0,0), J(0,1), J(1,0), J(1,1), J(m, 1), J(1,n).
(b) Using integration by parts, prove that, for m and n both > 1,

—1 n—1
+nJ(m—2,n) and J(m,n)—'11+nJ(m,n—2).

J(m,n) = n
m

(c) Evaluate (i) J(5,3), (i) J(6,5) and (iii) J(4,8).

By integrating by parts twice, prove that I, as defined in the first equality below
for positive integers n has the value given in the second equality:

n — sin(nmn/2)

"1t/2
I, = / sinnf cos 0 df = >
o n?—1

Evaluate the following definite integrals:

(@) [y xevdx;  (b) [y [+ D/(e* +4x + 1)] dx;
(© Jila+(a—1)cosO]71d0 with a>1; (d) [ (x> + 6x + 18) dx.
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2.4 HINTS AND ANSWERS

2.45

2.46

2.47

2.48

2.49

2.50

2.1
23

25
2.7

29
2.11

2.13

2.15
2.17

2.19

If J, is the integral
/k X" exp(—x?)dx
0
show that

(@) Jory1 =(r)/2,
() Jor =27(2r = 1)(2r = 3)--- (5)(3)(1) Jo.

Find positive constants a, b such that ax < sinx < bx for 0 < x < n/2. Use
this inequality to find (to two significant figures) upper and lower bounds for the
integral

/2
1=/ (1 +sin x)"2 dx.
0

Use the substitution ¢ = tan(x/2) to evaluate I exactly.
By noting that for 0 < 5 < 1, n'/2 > #** > n, prove that

L/(az—x2)3/4dxs Ly
Jo 4

Show that the total length of the astroid x> + y*? = a3, which can be
parameterised as x = acos’ 0, y = asin® 0, is 6a.

By noting that sinhx < le¥ < coshx, and that 1 + z> < (1 +z)? for z > 0, show
that, for x > 0, the length L of the curve y = %ex measured from the origin
satisfies the inequalities sinh x < L < x + sinh x.

The equation of a cardioid in plane polar coordinates is

p =a(l —sin ).
Sketch the curve and find (i) its area, (ii) its total length, (iii) the surface area of

the solid formed by rotating the cardioid about its axis of symmetry and (iv) the
volume of the same solid.

2.4 Hints and answers

(a) 3; (b) 2x+ 1, 2, 0; (c) cos x.

Use: the product rule in (a), (b), (d) and (e)[3 factors]; the chain rule in (c), (f)
and (g); logarithmic differentiation in (g) and (h).

(a) (x2 4 2x)exp x; (b) 2(cos? x — sin’ x) = 2 cos 2x;

(c) 2cos2x; (d) sinax + axcosax;

(e) (aexp ax)[(sinax + cos ax) tan~! ax + (sinax)(1 + a®x?)~'];

(£) Ta(x* = x~]/[x(x* + x~)]; () [(a* — a™)Inal/(a* + a™); (h) (1 + Inx)x*.
(a) —6(2x + 3)™*; (b) 2sec? x tan x; (c) —9 cosech?3x coth 3x;

(d) =x7!(Inx)7; (¢) —(a* — x?)~2[sin~"(x/a)] 2.

Calculate dy/dt and dx/dt and divide one by the other. (t + 2)?/[2(t + 1)?].
Alternatively, eliminate ¢ and find dy/dx by implicit differentiation.

—sinx in both cases.

The required conditions are 8n — 4 = 0 and 4n*> — 8n + 3 = 0; both are satisfied

by n = %
The stationary points are the zeros of 12x* + 12x? — 24x. The lowest stationary
value is —26 at x = —2; other stationary values are 6 at x =0 and 1 at x = 1.

Use logarithmic differentiation. Set dy/dx = 0, obtaining 2x> + 2xIna+ 1 = 0.
See figure 2.14.
dy _ (y>1/3, 2y a

ix e T 3

2/3

RY
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221

2.23

2.25

2.27

2.29

2.31

2.33

2.35
2.37

2.39

2a +

na 2na

Figure 2.14 The solution to exercise 2.17.

(a) 2(2 —9cos? x)sinx; (b) (2x~> —3x7!)sinx — (3x~2 + Inx)cos x; (c) 8(4x* +

30x% 4 62x + 38) exp 2x.

(a) f(1) =0 whilst f'(1) # 0, and so f(x) must be negative in some region with
x =1 as an endpoint.

(b) f'(x) = tan’x > 0 and f(0) = 0; g'(x) = (—cosx)(tanx — x)/x? which is
never positive in the range.

The false result arises because tannx is not differentiable at x = n/(2n), which

lies in the range 0 < x < n/n, and so the conditions for applying Rolle’s theorem

are not satisfied.

The relationship is xdy/dx = (2 — x)y.

By implicit differentiation, y'(x) = (3x?> — 12)/(8 — 3y?), giving y'(+2) = 0. Since

¥(2) = 4 and y(—2) = 0, the curve touches the x-axis at the point (—2,0).

(a) Express in partial fractions; J = % In[(x — 1)*/(x +2)] +c.

(b) Divide the numerator by the denominator and express the remainder in
partial fractions; J = x?/4 +41In(x +2) — 3In(x + 3) +c.

(c) After division of the numerator by the denominator, the remainder can be
expressed as 2(x +3)7' —5(x +3)72; J =3x+2In(x +3) + 5(x +3)"' +c.

(d) Set x* =u; J = (4a*)""tan~'(x*/a*) + c.

Writing b? — 4ac as A2 > 0, or 4ac — b* as A* > 0:

(i) A 'In[(2ax + b — A)/(2ax + b + A)] + k;

(ii) 2A" " tan'[(2ax + b) /A + k:

(iii) —2(2ax + b)~' +k.

f'(x) = (1 4+ sinx)/cos’ x = f(x)secx; J = In(f(x)) + ¢ = In(sec x + tan x) + c.

Note that dx = 2(b — a)cos 0 sin 0 d6.

(a) 7; (b) m(b— a)*/8; (c) n(b—a)/2.

(a) 2—=)*)cosy + 2ysiny — 2;(b) [(»*Iny)/2] + [(1 — y*)/4];

(o) ysin 'y + (1 —yH)2 —1;

(d) In(a® + 1) — (1/y) In(a® + y?) + (2/a)[tan™" (y/a) — tan™"(1/a)].

[(n+ 1) = nl'(n); (a) (i) n!, (i) 15/7/8; (b) =2 /7.

By integrating twice, recover a multiple of I,,.

Jory1 = rJy—y and 2Jy = (2r — 1)J5 .

Set # = 1 — (x/a)? throughout, and x = asin in one of the bounds.

L=["(1+Yexp2x)" dx.
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3

Complex numbers and
hyperbolic functions

This chapter is concerned with the representation and manipulation of complex
numbers. Complex numbers pervade this book, underscoring their wide appli-
cation in the mathematics of the physical sciences. The application of complex
numbers to the description of physical systems is left until later chapters and
only the basic tools are presented here.

3.1 The need for complex numbers

Although complex numbers occur in many branches of mathematics, they arise
most directly out of solving polynomial equations. We examine a specific quadratic
equation as an example.

Consider the quadratic equation

22 —4z45=0. (3.1)
Equation (3.1) has two solutions, z; and z,, such that
(z—z1)(z —22) =0. (3.2)

Using the familiar formula for the roots of a quadratic equation, (1.4), the
solutions z; and z,, written in brief as zj, are

4+ /(—4P -4 x5)
B 2
V-4

=2+ 5 (3.3)
Both solutions contain the square root of a negative number. However, it is not
true to say that there are no solutions to the quadratic equation. The fundamental
theorem of algebra states that a quadratic equation will always have two solutions
and these are in fact given by (3.3). The second term on the RHS of (3.3) is
called an imaginary term since it contains the square root of a negative number;
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i 3 3 i,
Figure 3.1 The function f(z) = z> — 4z + 5.

the first term is called a real term. The full solution is the sum of a real term
and an imaginary term and is called a complex number. A plot of the function
f(z) = z2 — 4z 4 5 is shown in figure 3.1. It will be seen that the plot does not
intersect the z-axis, corresponding to the fact that the equation f(z) = 0 has no
purely real solutions.

The choice of the symbol z for the quadratic variable was not arbitrary; the
conventional representation of a complex number is z, where z is the sum of a
real part x and i times an imaginary part y, i.e.

z=x+1y,

where i is used to denote the square root of —1. The real part x and the imaginary
part y are usually denoted by Rez and Imz respectively. We note at this point
that some physical scientists, engineers in particular, use j instead of i. However,
for consistency, we will use i throughout this book.
In our particular example, \/—4 = 2,/—1 = 2i, and hence the two solutions of
(3.1) are
2i

21’2=2i5=2il‘.

Thus, here x =2 and y = +1.
For compactness a complex number is sometimes written in the form

z=(x,)),

where the components of z may be thought of as coordinates in an xy-plot. Such
a plot is called an Argand diagram and is a common representation of complex
numbers; an example is shown in figure 3.2.
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N ezZ=Xx+1iy

X
Rez

Figure 3.2 The Argand diagram.

Our particular example of a quadratic equation may be generalised readily to
polynomials whose highest power (degree) is greater than 2, e.g. cubic equations
(degree 3), quartic equations (degree 4) and so on. For a general polynomial f(z),
of degree n, the fundamental theorem of algebra states that the equation f(z) =0
will have exactly n solutions. We will examine cases of higher-degree equations
in subsection 3.4.3.

The remainder of this chapter deals with: the algebra and manipulation of
complex numbers; their polar representation, which has advantages in many
circumstances; complex exponentials and logarithms; the use of complex numbers
in finding the roots of polynomial equations; and hyperbolic functions.

3.2 Manipulation of complex numbers

This section considers basic complex number manipulation. Some analogy may
be drawn with vector manipulation (see chapter 7) but this section stands alone
as an introduction.

3.2.1 Addition and subtraction

The addition of two complex numbers, z; and z,, in general gives another
complex number. The real components and the imaginary components are added
separately and in a like manner to the familiar addition of real numbers:

21 4z = (X1 + iy1) + (X2 4+ iy2) = (X1 + x2) +i(y1 + »2),
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Imz

Figure 3.3 The addition of two complex numbers.

or in component notation
z1 + 22 = (X1, 1) + (X2, y2) = (x1 + x2, 1 + 2).

The Argand representation of the addition of two complex numbers is shown in
figure 3.3.

By straightforward application of the commutativity and associativity of the
real and imaginary parts separately, we can show that the addition of complex
numbers is itself commutative and associative, i.e.

z1+z=2+1z,
21+ (22 +23) = (21 + 22) + z3.

Thus it is immaterial in what order complex numbers are added.

» Sum the complex numbers 1+ 2i, 3 —4i, —2 +i.

Summing the real terms we obtain
1+3-2=2,
and summing the imaginary terms we obtain
2i—4i+i=—i
Hence
(I+2)+@B—4i)+(-2+i)=2—1i «

The subtraction of complex numbers is very similar to their addition. As in the
case of real numbers, if two identical complex numbers are subtracted then the
result is zero.

86
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Imz

Figure 3.4 The modulus and argument of a complex number.

3.2.2 Modulus and argument

The modulus of the complex number z is denoted by |z| and is defined as

lz| = /X2 + y2 (3.4)

Hence the modulus of the complex number is the distance of the corresponding
point from the origin in the Argand diagram, as may be seen in figure 3.4.
The argument of the complex number z is denoted by arg z and is defined as

arg z = tan~! (X) . (3.5)
X

It can be seen that argz is the angle that the line joining the origin to z on
the Argand diagram makes with the positive x-axis. The anticlockwise direction
is taken to be positive by convention. The angle arg z is shown in figure 3.4.
Account must be taken of the signs of x and y individually in determining in
which quadrant arg z lies. Thus, for example, if x and y are both negative then
arg z lies in the range —m < arg z < —n/2 rather than in the first quadrant
(0 < arg z < n/2), though both cases give the same value for the ratio of y to x.

| » Find the modulus and the argument of the complex number z = 2 — 3i. |

Using (3.4), the modulus is given by
2l = V2 + (=37 = VI3,
Using (3.5), the argument is given by
argz =tan"' (—3).

The two angles whose tangents equal —1.5 are —0.9828 rad and 2.1588 rad. Since x = 2 and
y = =3, z clearly lies in the fourth quadrant; therefore arg z = —0.9828 is the appropriate
answer. <
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3.2.3 Multiplication

Complex numbers may be multiplied together and in general give a complex
number as the result. The product of two complex numbers z; and z, is found
by multiplying them out in full and remembering that i* = —1, i.e.
2122 = (X1 + iy1)(x2 + iy2)
= x1x2 + ix1y2 + iy1X2 + Py
(x1x2 = y1y2) + ilx1y2 + y1x2). (3.6)

» Multiply the complex numbers zy = 3 + 2i and z; = —1 — 4i. |

By direct multiplication we find
z1z3 = (3 + 2i)(—1 — 4i)
=—3-2i—12i— 8
=5—14i. < (3.7)

The multiplication of complex numbers is both commutative and associative,
ie.
212y = 2574, (3.8)
(z122)z3 = z1(2223). (3.9)
The product of two complex numbers also has the simple properties
lz122| = |z1]|z2], (3.10)
arg(z;z;) = arg z; + arg z. (3.11)

These relations are derived in subsection 3.3.1.

|>Verify that (3.10) holds for the product of z; = 3 4 2i and z; = —1 — 4i. |

From (3.7)
|z = |5 — 14i] = /52 + (—14) = 221.
We also find
il = V3 +22 = 13,
sl = TP (47 = /T
and hence

|z1]|z2 = V13417 = 221 = |z122]. «

We now examine the effect on a complex number z of multiplying it by +1
and +i. These four multipliers have modulus unity and we can see immediately
from (3.10) that multiplying z by another complex number of unit modulus gives
a product with the same modulus as z. We can also see from (3.11) that if we
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Imz

Figure 3.5 Multiplication of a complex number by +1 and +i.

multiply z by a complex number then the argument of the product is the sum
of the argument of z and the argument of the multiplier. Hence multiplying
z by unity (which has argument zero) leaves z unchanged in both modulus
and argument, i.e. z is completely unaltered by the operation. Multiplying by
—1 (which has argument n) leads to rotation, through an angle n, of the line
joining the origin to z in the Argand diagram. Similarly, multiplication by i or —i
leads to corresponding rotations of 7#/2 or —n/2 respectively. This geometrical
interpretation of multiplication is shown in figure 3.5.

| » Using the geometrical interpretation of multiplication by i, find the product i(1 —i). |

The complex number 1 — i has argument —n/4 and modulus /2. Thus, using (3.10) and
(3.11), its product with i has argument +7/4 and unchanged modulus /2. The complex
number with modulus /2 and argument +n/4 is 1 + i and so

i(1—i) =141,
as is easily verified by direct multiplication. <

The division of two complex numbers is similar to their multiplication but
requires the notion of the complex conjugate (see the following subsection) and
so discussion is postponed until subsection 3.2.5.

3.2.4 Complex conjugate

If z has the convenient form x + iy then the complex conjugate, denoted by z*,
may be found simply by changing the sign of the imaginary part, i.e. if z = x +iy
then z* = x — iy. More generally, we may define the complex conjugate of z as
the (complex) number having the same magnitude as z that when multiplied by
z leaves a real result, i.e. there is no imaginary component in the product.
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Imz
I ‘z=x+iy
X Rez
B " =x—iy

Figure 3.6 The complex conjugate as a mirror image in the real axis.
In the case where z can be written in the form x + iy it is easily verified, by
direct multiplication of the components, that the product zz* gives a real result:
22" = (x +iy)(x —iy) = x> — ixy + ixy — i2y* = x> + y* = |z~

Complex conjugation corresponds to a reflection of z in the real axis of the
Argand diagram, as may be seen in figure 3.6.

| » Find the complex conjugate of z = a + 2i + 3ib.

The complex number is written in the standard form
z=a+i(2+3b);
then, replacing i by —i, we obtain

z"=a—i2+3b). «

In some cases, however, it may not be simple to rearrange the expression for
z into the standard form x + iy. Nevertheless, given two complex numbers, z;
and zj, it is straightforward to show that the complex conjugate of their sum
(or difference) is equal to the sum (or difference) of their complex conjugates, i.e.
(z1 £ z2)" = z{ £ z;. Similarly, it may be shown that the complex conjugate of the
product (or quotient) of z; and z; is equal to the product (or quotient) of their
complex conjugates, i.e. (z122)" = z{z; and (z1/22)" = z{/z;.

Using these results, it can be deduced that, no matter how complicated the
expression, its complex conjugate may always be found by replacing every i by
—i. To apply this rule, however, we must always ensure that all complex parts are
first written out in full, so that no i’s are hidden.
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» Find the complex conjugate of the complex number z = w+2¥ ywhere w = x + 5i.

Although we do not discuss complex powers until section 3.5, the simple rule given above
still enables us to find the complex conjugate of z.

In this case w itself contains real and imaginary components and so must be written
out in full, ie.

7 = WY = (x+ 5i)3y+2i\-~
Now we can replace each i by —i to obtain
z7 = (x — 50,
It can be shown that the product zz" is real, as required. «

The following properties of the complex conjugate are easily proved and others
may be derived from them. If z = x + iy then

(") =z, (3.12)
z+z" =2 Rez = 2x, (3.13)
z—z" =2iImz = 2iy, (3.14)

z x? —y? 2xy
— = i . 1
z (%+yJ+ﬂ<#+ﬁ> G13)

The derivation of this last relation relies on the results of the following subsection.

3.2.5 Division

The division of two complex numbers z; and z, bears some similarity to their
multiplication. Writing the quotient in component form we obtain

z X1+

LA ﬂ (3.16)

Z X2ty
In order to separate the real and imaginary components of the quotient, we
multiply both numerator and denominator by the complex conjugate of the
denominator. By definition, this process will leave the denominator as a real
quantity. Equation (3.16) gives

zi _ (e A iy)(x2 —iya) _ (xaxa 4 y1y2) +ilxoyr — x1)2)

2 (X2 +iy2)(x2 —iya) x3 + y?
_ XXty Xy — Xi)
X3+ 3 X3+ 3

Hence we have separated the quotient into real and imaginary components, as
required.

In the special case where z; = zj, so that x, = x; and y, = —y, the general
result reduces to (3.195).
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» Express z in the form x + iy, when
3—2i
= .
—1+4i

Multiplying numerator and denominator by the complex conjugate of the denominator
we obtain

(3—2i)(—1—4)  —11—10i

z = =

(—1 4+ 4i)(—1 —4) 17
__ 110
1717

In analogy to (3.10) and (3.11), which describe the multiplication of two
complex numbers, the following relations apply to division:

al= @, (3.17)
| |zl
arg (%) = arg z; — arg z. (3.18)

The proof of these relations is left until subsection 3.3.1.

3.3 Polar representation of complex numbers

Although considering a complex number as the sum of a real and an imaginary
part is often useful, sometimes the polar representation proves easier to manipulate.
This makes use of the complex exponential function, which is defined by
. 23

e‘=exp251+z+§+§+~~. (3.19)
Strictly speaking it is the function expz that is defined by (3.19). The number e
is the value of exp(1), i.e. it is just a number. However, it may be shown that ¢*
and expz are equivalent when z is real and rational and mathematicians then
define their equivalence for irrational and complex z. For the purposes of this
book we will not concern ourselves further with this mathematical nicety but,
rather, assume that (3.19) is valid for all z. We also note that, using (3.19), by
multiplying together the appropriate series we may show that (see chapter 24)

ele™ = "1, (3.20)
which is analogous to the familiar result for exponentials of real numbers.
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Imz

Figure 3.7 The polar representation of a complex number.

From (3.19), it immediately follows that for z = i, 0 real,

; 0% i3
i0 .
0> 0 . 0> &
and hence that
¢ = cos +isin 0, (3.23)

where the last equality follows from the series expansions of the sine and cosine
functions (see subsection 4.6.3). This last relationship is called Euler’s equation. It
also follows from (3.23) that

0

e = cosnb + isinnd

for all n. From Euler’s equation (3.23) and figure 3.7 we deduce that
re’® = r(cos 0 + isin6)
=Xx+iy.
Thus a complex number may be represented in the polar form
z =re". (3.24)

Referring again to figure 3.7, we can identify r with |z| and 0 with arg z. The
simplicity of the representation of the modulus and argument is one of the main
reasons for using the polar representation. The angle 0 lies conventionally in the
range —n < 0 < =, but, since rotation by 6 is the same as rotation by 2nzm + 0,
where n is any integer,

reiH = rei(0+2nn).
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Imz

Firaei©1+62)

Figure 3.8 The multiplication of two complex numbers. In this case r; and
r, are both greater than unity.

The algebra of the polar representation is different from that of the real and
imaginary component representation, though, of course, the results are identical.
Some operations prove much easier in the polar representation, others much more
complicated. The best representation for a particular problem must be determined
by the manipulation required.

3.3.1 Multiplication and division in polar form

Multiplication and division in polar form are particularly simple. The product of
z; = r1e” and z, = e is given by
2123 = r1eire®
= 112" 102, (3.25)
The relations |z1z;| = |z1]|z2] and arg(zyz;) = arg z; + arg z; follow immediately.
An example of the multiplication of two complex numbers is shown in figure 3.8.

Division is equally simple in polar form; the quotient of z; and z; is given by

i0
z rie'! ry o
a1 - = L gil01=02), (3.26)
) rpel2 r

The relations |zy/z2| = |z1|/|z2| and arg(z;/z;) = arg z; — arg z; are again
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Imz

I eio'

Fyell2
Y £i(01—02)

I

Figure 3.9 The division of two complex numbers. As in the previous figure,
ry and r, are both greater than unity.

immediately apparent. The division of two complex numbers in polar form is
shown in figure 3.9.

3.4 de Moivre’s theorem

. . . o\n ,
We now derive an extremely important theorem. Since (e")) = ¢ we have

(cos 0 +isin0)" = cosnf + isinnd, (3.27)
where the identity ¢™® = cosnf + isinnd follows from the series definition of
e (see (3.21)). This result is called de Moivre’s theorem and is often used in the
manipulation of complex numbers. The theorem is valid for all n whether real,
imaginary or complex.

There are numerous applications of de Moivre’s theorem but this section
examines just three: proofs of trigonometric identities; finding the nth roots of
unity; and solving polynomial equations with complex roots.

3.4.1 Trigonometric identities

The use of de Moivre’s theorem in finding trigonometric identities is best illus-
trated by example. We consider the expression of a multiple-angle function in
terms of a polynomial in the single-angle function, and its converse.
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» Express sin 30 and cos 30 in terms of powers of cos 0 and sin 6.

Using de Moivre’s theorem,

c0s 30 + isin30 = (cos 0 + isin)°
= (cos’> 0 — 3 cos 0 sin” 0) + i(3 sin O cos® O — sin® 0). (3.28)

We can equate the real and imaginary coefficients separately, i.e.

cos 30 = cos® 6 — 3 cos 0 sin® 0
=4cos*0 —3cos 0 (3.29)

and

sin360 = 3sin 0 cos® 0 — sin® 0
= 3sinf —4sin’ 6. <

This method can clearly be applied to finding power expansions of cosnf and
sinn@ for any positive integer n.

The converse process uses the following properties of z = e,
|
"4+ — =2cosnb, (3.30)
Zn
1
" — — = 2isinnf. (3.31)
Zn

These equalities follow from simple applications of de Moivre’s theorem, i.e.

1 . .
"+ i (cos0 +isin0)" + (cos 0 +isin0)™"
= cosnf + isinnb + cos(—nb) + i sin(—nb)
= cosnf + isinnb + cosnd —isinnd

= 2cosnf
and

" — in = (cos 0 +isin0)" — (cos O + isin0)™"
V4
= cosnb + isinnb — cos nd + isin nd

= 2isinn0.

In the particular case where n =1,

1 ) .

z4-=¢0 4+ =2co0s0, (3.32)
z

s L0 Zaiine, (333)
zZ
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» Find an expression for cos® 0 in terms of cos 30 and cos 0.

Using (3.32),

Now using (3.30) and (3.32), we find

cos’ 0 = L cos30 + 2 cos. 4

This result happens to be a simple rearrangement of (3.29), but cases involving
larger values of n are better handled using this direct method than by rearranging
polynomial expansions of multiple-angle functions.

3.4.2 Finding the nth roots of unity

The equation z2 = 1 has the familiar solutions z = +1. However, now that
we have introduced the concept of complex numbers we can solve the general
equation z" = 1. Recalling the fundamental theorem of algebra, we know that
the equation has n solutions. In order to proceed we rewrite the equation as

oM = e2ikn
where k is any integer. Now taking the nth root of each side of the equation we
find

7 = eZikn/n.

Hence, the solutions of z" =1 are

Zigm = 1’ eZm/n, e le(nfl)n/n’

corresponding to the values 0,1,2,...,n — 1 for k. Larger integer values of k do
not give new solutions, since the roots already listed are simply cyclically repeated
for k =nn+ 1,n+ 2, etc.

» Find the solutions to the equation z* = 1.

By applying the above method we find

7= 82””[/3.

Hence the three solutions are z; = ¢ = 1, z, = /3 din/3

the next solution, for which k = 3, gives z4 = ¢*/3
separate solutions. <

, z3 = "™ We note that, as expected,
= 1 = zy, so that there are only three
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Imz

! |23

R

Rez

Figure 3.10 The solutions of z* = 1.

Not surprisingly, given that |z3| = |z|? from (3.10), all the roots of unity have
unit modulus, i.e. they all lie on a circle in the Argand diagram of unit radius.
The three roots are shown in figure 3.10.

The cube roots of unity are often written 1, @ and w?. The properties * = 1
and 1 + o + w? = 0 are easily proved.

3.4.3 Solving polynomial equations

A third application of de Moivre’s theorem is to the solution of polynomial
equations. Complex equations in the form of a polynomial relationship must first
be solved for z in a similar fashion to the method for finding the roots of real
polynomial equations. Then the complex roots of z may be found.

»Solve the equation z% — z° + 4z* — 623 + 22> — 82z +8 = 0.

We first factorise to give
(2 =22+ 4)(z—1)=0.

Hence z3 = 2 or z> = —4 or z = 1. The solutions to the quadratic equation are z = +2i;
to find the complex cube roots, we first write the equation in the form

23 =2 = e
where k is any integer. If we now take the cube root, we get

7 = 213 2kn/3.
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To avoid the duplication of solutions, we use the fact that —n < arg z <« and find

zZ1 = 21/3,
. 1 \/§
— 21/3 2mi/3 _ 21/3 _ ;
Z3 e 3 + —2 i,
. 1 \/5
— o132/ 13 [ _1 _ N2
Z3 e 3 3 1
The complex numbers zj, z; and z3, together with z4 = 2i, zs = —2i and zg = 1 are the

solutions to the original polynomial equation.
As expected from the fundamental theorem of algebra, we find that the total number
of complex roots (six, in this case) is equal to the largest power of z in the polynomial. «

A useful result is that the roots of a polynomial with real coefficients occur in
conjugate pairs (i.e. if z; is a root, then zj is a second distinct root, unless z; is
real). This may be proved as follows. Let the polynomial equation of which z is
a root be

anz" + a1z -+ ajz +ag = 0.
Taking the complex conjugate of this equation,
a4 a )V 4+ 4 ap=0.
But the a, are real, and so z* satisfies
an(z ) 4 a2 4 a2 Fap =0,

and is also a root of the original equation.

3.5 Complex logarithms and complex powers

The concept of a complex exponential has already been introduced in section 3.3,
where it was assumed that the definition of an exponential as a series was valid
for complex numbers as well as for real numbers. Similarly we can define the
logarithm of a complex number and we can use complex numbers as exponents.

Let us denote the natural logarithm of a complex number z by w = Ln z, where
the notation Ln will be explained shortly. Thus, w must satisfy

z=e".

Using (3.20), we see that

Z1zy = ewl ewz — ew1+wz’

and taking logarithms of both sides we find
Ln(lez) =W +wy = LIlZ1 + LHZZ, (334)

which shows that the familiar rule for the logarithm of the product of two real
numbers also holds for complex numbers.
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We may use (3.34) to investigate further the properties of Lnz. We have already
noted that the argument of a complex number is multivalued, i.e. argz = 0 + 2nn,
where n is any integer. Thus, in polar form, the complex number z should strictly
be written as

5 — peil0+2mm)
Taking the logarithm of both sides, and using (3.34), we find
Lnz =Inr+i(0 + 2nn), (3.35)

where Inr is the natural logarithm of the real positive quantity r and so is
written normally. Thus from (3.35) we see that Ln z is itself multivalued. To avoid
this multivalued behaviour it is conventional to define another function Inz, the
principal value of Ln z, which is obtained from Lnz by restricting the argument
of z to lie in the range —n < 0 < 7.

» Evaluate Ln (—i). |

By rewriting —i as a complex exponential, we find
Ln(—i) = Ln [/ = j(—m/2 + 2nm),
where n is any integer. Hence Ln(—i) = —in/2, 3in/2, .... We note that In(—i), the
principal value of Ln(—i), is given by In(—i) = —in/2. <«
If z and t are both complex numbers then the zth power of ¢ is defined by

= eant.

Since Lnt is multivalued, so too is this definition.

| » Simplify the expression z = i~2.,

Firstly we take the logarithm of both sides of the equation to give
Lnz = —2iLni.
Now inverting the process we find
o7 — 5 — p2ilni

We can write i = €//2*2"™_where n is any integer, and hence

Lni=Ln {ei(n/2+2nn)i|

=i (n/Z + 2nn) .

We can now simplify z to give

72— o 2ixi(n/2+2nm)

— e(n+4nn)’
which, perhaps surprisingly, is a real quantity rather than a complex one. <
Complex powers and the logarithms of complex numbers are discussed further

in chapter 24.
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3.6 Applications to differentiation and integration

We can use the exponential form of a complex number together with de Moivre’s
theorem (see section 3.4) to simplify the differentiation of trigonometric functions.

| » Find the derivative with respect to x of e** cos 4x.

We could differentiate this function straightforwardly using the product rule (see subsec-
tion 2.1.2). However, an alternative method in this case is to use a complex exponential.
Let us consider the complex number

z = e™(cos4x +isindx) = &' = T,

where we have used de Moivre’s theorem to rewrite the trigonometric functions as a com-
plex exponential. This complex number has e’ cos4x as its real part. Now, differentiating
z with respect to x we obtain
dz
dx
where we have again used de Moivre’s theorem. Equating real parts we then find

= (3 + 4i)el% = (3 + 4i)e™(cos 4x + isin 4x), (3.36)

dL{c (€% cos4x) = e™(3 cos4x — 4sin 4x).

By equating the imaginary parts of (3.36), we also obtain, as a bonus,

d . .
' (e sindx) = (4 cos4x + 3sin4x). <

In a similar way the complex exponential can be used to evaluate integrals
containing trigonometric and exponential functions.

» Evaluate the integral I = [ ™ cos bx dx.

Let us consider the integrand as the real part of the complex number

e™(cos bx + i sin bx) = e™e = l*Hib),

where we use de Moivre’s theorem to rewrite the trigonometric functions as a complex
exponential. Integrating we find
(a+ib)x elatib
/e d}‘_a—}—ib—‘rc
(a — ib)e(a+ih)x
= —F—+t¢

(a —ib)(a + ib)
e ibx -1 ibx
=air (ae™ —ibe™) + ¢, (3.37)
where the constant of integration ¢ is in general complex. Denoting this constant by
¢ = ¢y +ic; and equating real parts in (3.37) we obtain

1= / e cosbxdx = ﬁ(ﬂ cos bx + bsin bx) + ¢y,
which agrees with result (2.37) found using integration by parts. Equating imaginary parts
in (3.37) we obtain, as a bonus,

J = '/e"" sinbx dx = e

(asinbx — bcosbx) + ¢;. «
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3.7 Hyperbolic functions

The hyperbolic functions are the complex analogues of the trigonometric functions.
The analogy may not be immediately apparent and their definitions may appear
at first to be somewhat arbitrary. However, careful examination of their properties
reveals the purpose of the definitions. For instance, their close relationship with
the trigonometric functions, both in their identities and in their calculus, means
that many of the familiar properties of trigonometric functions can also be applied
to the hyperbolic functions. Further, hyperbolic functions occur regularly, and so
giving them special names is a notational convenience.

3.7.1 Definitions

The two fundamental hyperbolic functions are cosh x and sinh x, which, as their
names suggest, are the hyperbolic equivalents of cos x and sin x. They are defined
by the following relations:

coshx = %(ex +e7), (3.38)

sinhx = L(e* — ™). (3.39)

Note that cosh x is an even function and sinh x is an odd function. By analogy
with the trigonometric functions, the remaining hyperbolic functions are

sinh x X —e

hx = _f—e 4
tanhx coshx e*+e¥’ (3.40)
1 2
hx=— =~ 3.41
X = Coshx & +e X’ (3:41)
cosech x = b2 (3.42)
" sinhx ¥ —e¥’ ’

1 X —X

cothx = _ete (3.43)

tanhx e¥—e ™™
All the hyperbolic functions above have been defined in terms of the real variable
x. However, this was simply so that they may be plotted (see figures 3.11-3.13);
the definitions are equally valid for any complex number z.

3.7.2 Hyperbolic—trigonometric analogies

In the previous subsections we have alluded to the analogy between trigonometric
and hyperbolic functions. Here, we discuss the close relationship between the two
groups of functions.

Recalling (3.32) and (3.33) we find

cosix = 1(e¥ +e7),

sinix = %i(ex —e ).
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cosh x

Figure 3.11 Graphs of cosh x and sechx.

47 | cosech x
\ sinh x
2,
-2 -1 1 2 X
_ot
\\\
cosech x |

Figure 3.12 Graphs of sinh x and cosechx.

Hence, by the definitions given in the previous subsection,

cosh x = cosix, (3.44)
isinh x = sinix, (3.45)
cos x = cosh ix, (3.46)
isin x = sinh ix. (3.47)

These useful equations make the relationship between hyperbolic and trigono-
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coth x

Figure 3.13 Graphs of tanh x and coth x.

metric functions transparent. The similarity in their calculus is discussed further
in subsection 3.7.6.

3.7.3 Identities of hyperbolic functions

The analogies between trigonometric functions and hyperbolic functions having
been established, we should not be surprised that all the trigonometric identities
also hold for hyperbolic functions, with the following modification. Wherever
sin? x occurs it must be replaced by —sinh’x, and vice versa. Note that this
replacement is necessary even if the sin® x is hidden, e.g. tan®x = sin® x/ cos? x
and so must be replaced by (— sinh® x/ cosh? x) = — tanh?® x.

» Find the hyperbolic identity analogous to cos®x + sin’x = 1. |

Using the rules stated above cos? x is replaced by cosh® x, and sin® x by —sinh? x, and so
the identity becomes

cosh? x — sinh? x = 1.

This can be verified by direct substitution, using the definitions of cosh x and sinh x; see
(3.38) and (3.39). <

Some other identities that can be proved in a similar way are

sech’x = 1 — tanh’ x, (3.48)
cosech’x = coth? x — 1, (3.49)
sinh 2x = 2 sinh x cosh x, (3.50)
cosh 2x = cosh? x + sinh? x. (3.51)
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3.7.4 Solving hyperbolic equations

When we are presented with a hyperbolic equation to solve, we may proceed
by analogy with the solution of trigonometric equations. However, it is almost
always easier to express the equation directly in terms of exponentials.

| » Solve the hyperbolic equation coshx — 5sinhx — 5 = 0.

Substituting the definitions of the hyperbolic functions we obtain
%(ex +e7)— %(eX —e ) —5=0.
Rearranging, and then multiplying through by —e*, gives in turn
—2¢*4+3eF—=5=0
and
20 +5¢ —3=0.
Now we can factorise and solve:
(2e* —1)(e*+3) = 0.

Thus e* = 1/2 or ¢* = —3. Hence x = —In2 or x = In(—3). The interpretation of the
logarithm of a negative number has been discussed in section 3.5. <

3.7.5 Inverses of hyperbolic functions

Just like trigonometric functions, hyperbolic functions have inverses. If y =
coshx then x = cosh™ y, which serves as a definition of the inverse. By using
the fundamental definitions of hyperbolic functions, we can find closed-form
expressions for their inverses. This is best illustrated by example.

» Find a closed-form expression for the inverse hyperbolic function y = sinh™' x.

First we write x as a function of y, i.e.
y=sinh'x = x=sinhy.
(e —e),

Now, since coshy = 1(¢* +¢7”) and sinhy = 1

¢’ =coshy +sinhy

=1/1+sinh?y +sinhy

e =14+x24x,
and hence
y=In(v1+x2+x). <

In a similar fashion it can be shown that
cosh™ x = In(v/x2 — 1 + x).
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sech™'x

cosh™ x
2
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X

cosh™ x
sech!x

Figure 3.14 Graphs of cosh™' x and sech™'x.

» Find a closed-form expression for the inverse hyperbolic function y = tanh™" x.

First we write x as a function of y, i.e.

y =tanh™'x = Xx = tanh y.

Now, using the definition of tanh y and rearranging, we find

eV — e

g = (x4 De™ =(1—x)e’.

Thus, it follows that

eZ,\»_lJ"X o o [1+x
1—x 1—x’
In [14+x
1—x
1 1
tanh’lx:51n<li§>i<

Graphs of the inverse hyperbolic functions are given in figures 3.14-3.16.

3.7.6 Calculus of hyperbolic functions

Just as the identities of hyperbolic functions closely follow those of their trigono-
metric counterparts, so their calculus is similar. The derivatives of the two basic
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4 1
cosech™ x
2 sinh™ x
-2 —1 1 2 x
2
cosech™'x
—4

Figure 3.15 Graphs of sinh™' x and cosech™'x.

Figure 3.16 Graphs of tanh™! x and coth™ x.

hyperbolic functions are given by

% (cosh x) = sinh x, (3.52)
% (sinh x) = cosh x. (3.53)

They may be deduced by considering the definitions (3.38), (3.39) as follows.
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| » Verify the relation (d/dx)cosh x = sinh x.

Using the definition of cosh x,
coshx = %(e’” +e7),

and differentiating directly, we find

I (coshx) = (e* — ™)
= sinh x. <

Clearly the integrals of the fundamental hyperbolic functions are also defined
by these relations. The derivatives of the remaining hyperbolic functions can be
derived by product differentiation and are presented below only for complete-
ness.

d (tanh x) = sech’x, (3.54)

dx

% (sech x) = —sech x tanhx, (3.55)
ix (cosech x) = —cosech x coth x, (3.56)

i (coth x) = —cosech?x. (3.57)

dx

The inverse hyperbolic functions also have derivatives, which are given by the
following:

d X 1

E <COSh 5) = ﬂ, (358)
d X 1

—(sinh™'2) = ———— .
- <s1n a) N (3.59)
d_({c (tanh_ g) = azﬁ 5, for X2 < d?, (3.60)
% <coth_1 g) = xz_aa2’ for x* > d°. (3.61)

These may be derived from the logarithmic form of the inverse (see subsec-
tion 3.7.5).
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» Evaluate (d/dx)sinh~" x using the logarithmic form of the inverse.

From the results of section 3.7.5,

31

32

33
34

35

3.6

3.7

3.8

% (sinh™'x) = d_d\c [ln (x—',— x2 + 1)]
B
e U e
3 1 I T4x
‘xwm( Noeal )
1

= .4
Jx2+1

3.8 Exercises

Two complex numbers z and w are given by z = 3 +4i and w =2 —i. On an
Argand diagram, plot

(@) z+w, (b)w—z (c) wz, (d) z/w,
e) z*w4w'z, (f) w% (g) Inz, (h) (1 +z 4+ w)V/2

By considering the real and imaginary parts of the product e’e prove the
standard formulae for cos( + ¢) and sin(6 + ¢).

By writing n/12 = (n/3) — (n/4) and considering e™/'*, evaluate cot(n/12).

Find the locus in the complex z-plane of points that satisfy the following equa-
tions.

in/12

1+it
(@) z—c=p ( 1 + it) , where ¢ is complex, p is real and ¢t is a real parameter
that varies in the range —oo < t < o0.
(b) z = a+ bt + ct?, in which ¢ is a real parameter and a, b, and ¢ are complex
numbers with b/c real.
Evaluate
(a) Re(exp?2iz), (b) Im(cosh?z), (c) (—1 + /3i)"/2,
(d) Jexp(i'?)], (e) exp(®), () Im(2'*), (g) ', (h) In[(y/3 +0)°].
Find the equations in terms of x and y of the sets of points in the Argand
diagram that satisfy the following:
(a) Rez?=Imz?%;
(b) (Imz?)/z* = —i;
(c) arglz/(z—1)] ==n/2.
Show that the locus of all points z = x 4 iy in the complex plane that satisfy
|z —ia| = Az +ial, 2>0,
is a circle of radius |24a/(1 — 42)| centred on the point z = ia[(1 + 2%)/(1 — 2%)].
Sketch the circles for a few typical values of 4, including A < 1,4/ >1and 1 = 1.
The two sets of points z = a, z =b, z =c¢,and z = A, z = B, z = C are
the corners of two similar triangles in the Argand diagram. Express in terms of
a,b,...,C
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(a) the equalities of corresponding angles, and
(b) the constant ratio of corresponding sides,

in the two triangles.
By noting that any complex quantity can be expressed as

z = |z|exp(iargz),
deduce that
a(B—C)+b(C—A)+c(A—B)=0.

For the real constant a find the loci of all points z = x + iy in the complex plane
that satisfy

(a) Re{ln(zlzz>}:c, c>0,
z

(b) Im{lnC;Z)}:k, 0<k<mn/2

Identify the two families of curves and verify that in case (b) all curves pass
through the two points +ia.

The most general type of transformation between one Argand diagram, in the
z-plane, and another, in the Z-plane, that gives one and only one value of Z for
each value of z (and conversely) is known as the general bilinear transformation
and takes the form

aZ +b
z= .
cZ +d
(a) Confirm that the transformation from the Z-plane to the z-plane is also a
general bilinear transformation.
(b) Recalling that the equation of a circle can be written in the form

zZ—Z

= A1,

Z—2I

show that the general bilinear transformation transforms circles into circles
(or straight lines). What is the condition that z;, z, and A must satisfy if the
transformed circle is to be a straight line?

Sketch the parts of the Argand diagram in which

(a) Rez? <0, |z'? <2;
(b) O<argz" <m/2;
(c) |expz’| — 0 as |z| — .

What is the area of the region in which all three sets of conditions are satisfied?

Denote the nth roots of unity by 1, w,, »?2, ..., o

(a) Prove that

n—1 n—1

() Y =0, (i) [Jo,=1*".
r=0

r=0

(b) Express x? + y*+z> — yz — zx — xy as the product of two factors, each linear
in x, y and z, with coefficients dependent on the third roots of unity (and
those of the x terms arbitrarily taken as real).
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3.8 EXERCISES

3.13

3.14

3.15

3.16

3.17

3.18

Prove that x*! — "1 where m is an integer > 1, can be written as

- 2nr
2l oml _ 2 2
X a (x—a) ,I.:ll [x 2ax cos <2m T 1) +a ] .

The complex position vectors of two parallel interacting equal fluid vortices
moving with their axes of rotation always perpendicular to the z-plane are z;
and z,. The equations governing their motions are

dzy i dz; i

dt ~  zi—z dt ~  z—z
Deduce that (a) z; + 2, (b) |21 — 25| and (c) |z1|> + |z2|? are all constant in time,
and hence describe the motion geometrically.
Solve the equation
27 — 420 4 62° — 624 + 623 — 1222 + 8z +4 =0,
(a) by examining the effect of setting z* equal to 2, and then
(b) by factorising and using the binomial expansion of (z + a)*.

Plot the seven roots of the equation on an Argand plot, exemplifying that complex
roots of a polynomial equation always occur in conjugate pairs if the polynomial
has real coeflicients.
The polynomial f(z) is defined by

f(z) = 2° —62* +152° — 3422 + 36z — 48.

(a) Show that the equation f(z) = 0 has roots of the form z = Zi, where 1 is
real, and hence factorize f(z).

(b) Show further that the cubic factor of f(z) can be written in the form
(z +a)®* + b, where a and b are real, and hence solve the equation f(z) = 0
completely.

The binomial expansion of (1 + x)", discussed in chapter 1, can be written for a
positive integer n as

(14x) = Xn: "C,x",
r=0

where "C, = n!/[r!(n —r)!].
(a) Use de Moivre’s theorem to show that the sum
Si(n) ="Co—="Co+"C4y— -+ +(=1)""Ca, n—1<2m<n,

has the value 2"/ cos(nm /4).
(b) Derive a similar result for the sum

Sy(n) ="C; ="C3+"Cs —---+(=1)""Coppy1, n—1<2m+1<n,
and verify it for the cases n =6, 7 and 8.
By considering (1 4 exp i0)", prove that
Z "C, cosrf = 2"cos"(0/2)cos(nb/2),

r=0
n

Z "C,sinr) = 2" cos"(0/2)sin(n6/2),

r=0

where "C, = n!/[r!(n —r)!].
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3.20

3.21

3.22

3.23

3.24

3.26

Use de Moivre’s theorem with n = 4 to prove that

cos40 = 8cos*0 — 8cos® 0 + 1,

1/2
cosE = <2+\/§> .

8 4

and deduce that

Express sin* @ entirely in terms of the trigonometric functions of multiple angles

and deduce that its average value over a complete cycle is 3.

8
Use de Moivre’s theorem to prove that

£ — 108 + 5t

54— 1002 + 17

where t = tan 0. Deduce the values of tan(nn/10) for n =1, 2, 3, 4.
Prove the following results involving hyperbolic functions.

(a) That

tan 50 =

coshx — cosh y = 2sinh <‘CT+)}> sinh (x;y) .

(b) That, if y =sinh'x,
d’y dy
2, ey @ _
(x"+ )dx2 +de

Determine the conditions under which the equation

0.

acoshx + bsinhx = ¢, c>0,

has zero, one, or two real solutions for x. What is the solution if a*> = ¢* + b*>?
Use the definitions and properties of hyperbolic functions to do the following:

(a) Solve cosh x = sinh x + 2sech x.

(b) Show that the real solution x of tanhx = cosech x can be written in the
form x = In(u + \/ﬁ) Find an explicit value for u.

(c) Evaluate tanh x when x is the real solution of cosh2x = 2 cosh x.

Express sinh* x in terms of hyperbolic cosines of multiples of x, and hence find

the real solutions of

2cosh4x —8cosh2x+5=0.

In the theory of special relativity, the relationship between the position and time
coordinates of an event, as measured in two frames of reference that have parallel
x-axes, can be expressed in terms of hyperbolic functions. If the coordinates are
x and ¢ in one frame and x’ and ¢ in the other, then the relationship take the
form

x" = xcosh ¢ — ct sinh ¢,
ct' = —xsinh ¢ + ct cosh ¢.

Express x and ct in terms of x', ¢t and ¢ and show that

X2 —(ct)? = (x')* — (cf').
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3.9 HINTS AND ANSWERS

3.27

3.28

31

33

35

3.7

39

3.11
3.13

3.15
3.17
3.19
3.21

3.23

3.25

A closed barrel has as its curved surface the surface obtained by rotating about
the x-axis the part of the curve

y = a[2 — cosh(x/a)]

lying in the range —b < x < b, where b < acosh™' 2. Show that the total surface
area, A, of the barrel is given by

A = na[9a — 8aexp(—b/a) + aexp(—2b/a) — 2b].

The principal value of the logarithmic function of a complex variable is defined
to have its argument in the range —n < arg z < 7. By writing z = tanw in terms

of exponentials show that
1 1+iz
—1 _
tan~ z = 2i1n<17iz>'

tan™! <—2\/§ — 3i>
Z .

Use this result to evaluate

3.9 Hints and answers

(a) 5+ 3i; (b) —1 —5i; (¢) 10+ 5i; (d) 2/5+ 11i/5; (e) 4; (f) 3 — 4i;

(g) In5 + i[tan™'(4/3) + 2nn]; (h) +(2.521 + 0.595i).

Use sinn/4 = cosn/4 = 1/4/2, sinn/3 = 1/2 and cosn/3 = \/3/2.

cotn/12 =2+ /3.

(a) exp(—2y)cos 2x; (b) (sin 2y sinh 2x)/2; (c) \/Eexp(ni/3) or /2exp(4ni/3);

(d) exp(l/ﬁ) or exp(—1/+/2); () 0.540 — 0.841i; (f) 8sin(In2) = 5.11;

(g) exp(—n/2 — 2xn); (h) In8 + i(6n + 1/2)x.

Starting from |x + iy — ia| = A|x + iy + ia|, show that the coefficients of x and y

are equal, and write the equation in the form x? + (y — a)® = r2.

(a) Circles enclosing z = —ia, with 4 =expc > 1.

(b) The condition is that arg[(z —ia)/(z+ia)] = k. This can be rearranged to give
a(z + z") = (a* — |z|*) tank, which becomes in x, y coordinates the equation
of a circle with centre (—acotk,0) and radius a cosec k.

All three conditions are satisfied in 37/2 < 0 < 7n/4, |z| < 4; area = 27.

Denoting exp[27i/(2m + 1)] by Q, express x> — a®"*+! as a product of factors

like (x — aQ') and then combine those containing Q" and Q**+!=". Use the fact

that Q¥+ = 1.

The roots are 23 exp(2nni/3) for n = 0,1,2; 1 4 3'/4; 14 34,

Consider (1 4 i)". (b) S2(n) = 2"/?sin(nm/4). S»(6) = —8, S5(7) = —8, S»(8) = 0.

Use the binomial expansion of (cos 6 + isin 0)*.

Show that cos 50 = 16¢> — 20¢® + 5¢, where ¢ = cos 6, and correspondingly for

sin 50. Use cos2 0 = 1 + tan” 6. The four required values are

[(5 = v20)/51'2, (5 — \20)'/2, [(5 + /20)/5]'/2, (5 + /20)'/2.

Reality of the root(s) requires ¢> + b> > a*> and a + b > 0. With these conditions,

there are two roots if a> > b?, but only one if b*> > a°.

For a®> = ¢ + b%, x = L In[(a — b)/(a + b)].

Reduce the equation to 16sinh* x = 1, yielding x = +0.481.
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3.27 Show that ds = (cosh x/a) dx;
curved surface area = na’[8 sinh(b/a) — sinh(2b/a)] — 2rab.
flat ends area = 27na?[4 — 4 cosh(b/a) 4 cosh?(b/a)].
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4

Series and limits

4.1 Series

Many examples exist in the physical sciences of situations where we are presented
with a sum of terms to evaluate. For example, we may wish to add the contributions
from successive slits in a diffraction grating to find the total light intensity at a
particular point behind the grating.

A series may have either a finite or infinite number of terms. In either case, the
sum of the first N terms of a series (often called a partial sum) is written

Sy=ur+u+us+---+un,

where the terms of the series u,, n = 1,2,3,..., N are numbers, that may in
general be complex. If the terms are complex then Sy will in general be complex
also, and we can write Sy = Xy +iYy, where Xy and Yy are the partial sums of
the real and imaginary parts of each term separately and are therefore real. If a
series has only N terms then the partial sum Sy is of course the sum of the series.
Sometimes we may encounter series where each term depends on some variable,
X, say. In this case the partial sum of the series will depend on the value assumed
by x. For example, consider the infinite series

2 3
S(x)=1+x+%+%+~--.
This is an example of a power series; these are discussed in more detail in
section 4.5. It is in fact the Maclaurin expansion of exp x (see subsection 4.6.3).
Therefore S(x) = expx and, of course, varies according to the value of the
variable x. A series might just as easily depend on a complex variable z.
A general, random sequence of numbers can be described as a series and a sum

of the terms found. However, for cases of practical interest, there will usually be
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some sort of relationship between successive terms. For example, if the nth term
of a series is given by
1

Uy = —

o’
forn=1,2,3,..., N then the sum of the first N terms will be

N

111 1
SN=Zun=§+Z+§+~~+2—N. (4.1)

n=1

It is clear that the sum of a finite number of terms is always finite, provided
that each term is itself finite. It is often of practical interest, however, to consider
the sum of a series with an infinite number of finite terms. The sum of an
infinite number of terms is best defined by first considering the partial sum
of the first N terms, Sy. If the value of the partial sum Sy tends to a finite
limit, S, as N tends to infinity, then the series is said to converge and its sum
is given by the limit S. In other words, the sum of an infinite series is given
by

S = lim SN,
N—-w
provided the limit exists. For complex infinite series, if Sy approaches a limit
S =X +iY as N — oo, this means that Xy — X and Yy — Y separately, i.e.
the real and imaginary parts of the series are each convergent series with sums
X and Y respectively.

However, not all infinite series have finite sums. As N — oo, the value of the
partial sum Sy may diverge: it may approach +oo or —oo, or oscillate finitely
or infinitely. Moreover, for a series where each term depends on some variable,
its convergence can depend on the value assumed by the variable. Whether an
infinite series converges, diverges or oscillates has important implications when
describing physical systems. Methods for determining whether a series converges
are discussed in section 4.3.

4.2 Summation of series

It is often necessary to find the sum of a finite series or a convergent infinite
series. We now describe arithmetic, geometric and arithmetico-geometric series,
which are particularly common and for which the sums are easily found. Other
methods that can sometimes be used to sum more complicated series are discussed
below.

116



4.2 SUMMATION OF SERIES

4.2.1 Arithmetic series

An arithmetic series has the characteristic that the difference between successive
terms is constant. The sum of a general arithmetic series is written

N—-1
Sy=a+(a+d)+(a+2d)+---+a+(N—=dl =) (a+nd).
n=0

Rewriting the series in the opposite order and adding this term by term to the
original expression for Sy, we find

Sy = g [a+a+(N—1)d] = %(ﬁrst term + last term). (4.2)

If an infinite number of such terms are added the series will increase (or decrease)
indefinitely; that is to say, it diverges.

» Sum the integers between 1 and 1000 inclusive. |

This is an arithmetic series with a = 1, d = 1 and N = 1000. Therefore, using (4.2) we find

Sy = @(1 + 1000) = 500500,

which can be checked directly only with considerable effort. «

4.2.2 Geometric series

Equation (4.1) is a particular example of a geometric series, which has the
characteristic that the ratio of successive terms is a constant (one-half in this
case). The sum of a geometric series is in general written

N-1
Sy=a+ar+ar’+---+ar¥ = E ar",
n=0

where a is a constant and r is the ratio of successive terms, the common ratio. The
sum may be evaluated by considering Sy and rSy:
Sy=a+ar+ar*+a?+-- +arV,
rSy =ar+ar’ +ar’ + ar* + - + ar™.
If we now subtract the second equation from the first we obtain

(1—r)Sy =a—ar®,

and hence

a(l —r)

Sy = (4.3)
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For a series with an infinite number of terms and |r| < 1, we have limy_,,, 7V = 0,
and the sum tends to the limit
a
1—7r
In (4.1),r = %, a= %, and so S = 1. For |r| > 1, however, the series either diverges
or oscillates.

S =

(4.4)

» Consider a ball that drops from a height of 27m and on each bounce retains only a third
of its kinetic energy; thus after one bounce it will return to a height of 9m, after two
bounces to 3m, and so on. Find the total distance travelled between the first bounce and
the Mth bounce.

The total distance travelled between the first bounce and the Mth bounce is given by the
sum of M — 1 terms:
M2 g
Sy =2(9+3+1+---)=2m§ﬁ
for M > 1, where the factor 2 is included to allow for both the upward and the downward
journey. Inside the parentheses we clearly have a geometric series with first term 9 and
common ratio 1/3 and hence the distance is given by (4.3), i.e.

o[1-()"]

= :27{1_(%)M—1}’

where the number of terms N in (4.3) has been replaced by M — 1. «

Sm-1=2x%

4.2.3 Arithmetico-geometric series

An arithmetico-geometric series, as its name suggests, is a combined arithmetic
and geometric series. It has the general form

N—1
Sy =a+(a+dr+(a+2d)p? + -+ [a+ (N —1)d N = "(a+ndy,
n=0

and can be summed, in a similar way to a pure geometric series, by multiplying
by r and subtracting the result from the original series to obtain

A—rSy=a+rd+r2d+---+rN"1d—[a+ (N — )d] V.

Using the expression for the sum of a geometric series (4.3) and rearranging, we
find
a—[a+(N—=DdlrN  rd(1 -V

1—r + (1—r)?

For an infinite series with |r| < 1, limy_. ¥ = 0 as in the previous subsection,
and the sum tends to the limit

Sy =

a n rd
1—r (1—r)?

As for a geometric series, if |r| > 1 then the series either diverges or oscillates.

S = (4.5)
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» Sum the series

5 8 11
S—2+2+22+?+

This is an infinite arithmetico-geometric series with a = 2, d = 3 and r = 1/2. Therefore,
from (4.5), we obtain S = 10. «

4.2.4 The difference method

The difference method is sometimes useful in summing series that are more
complicated than the examples discussed above. Let us consider the general series

N
Zun=u1+u2+~~-+uN.

n=1

If the terms of the series, u,, can be expressed in the form

=fn)—fn—=1)

for some function f(n) then its (partial) sum is given by

N
Sy =" u, = f(N) - f(0).
n=1

This can be shown as follows. The sum is given by
SN=ur+u+---+uy
and since u, = f(n) — f(n — 1), it may be rewritten
Sy =[f(M)=fO]+[fQ) = fM] + -+ [f(N) = f(N = D].
By cancelling terms we see that

Sy = f(N) = £(0).

» Evaluate the sum

Zn(n+1

Using partial fractions we find
(1-3)
Uy, = — —-=].
n+1 n
Hence u, = f(n) — f(n — 1) with f(n) = —1/(n+ 1), and so the sum is given by

1 N
Sy =N =0 = - +l=§7
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The difference method may be easily extended to evaluate sums in which each
term can be expressed in the form

up = f(n) — f(n—m), (4.6)
where m is an integer. By writing out the sum to N terms with each term expressed
in this form, and cancelling terms in pairs as before, we find

m m

SN:Zf(N—k-i—l)—kz:f(lfk).
=1

k=1

» Evaluate the sum

R
Z n(n+2)

n=1

Using partial fractions we find

_ 1 1
tn = [2(n+2) - %] :
Hence u, = f(n) — f(n — 2) with f(n) = —1/[2(n + 2)], and so the sum is given by

S = f)+ SN =0 =0~ f0 =3 =3 (5 i) -

In fact the difference method is quite flexible and may be used to evaluate
sums even when each term cannot be expressed as in (4.6). The method still relies,
however, on being able to write u, in terms of a single function such that most
terms in the sum cancel, leaving only a few terms at the beginning and the end.
This is best illustrated by an example.

» Evaluate the sum

a 1
Z nn+1)(n+2)

n=1

Using partial fractions we find

1 1 1

R TP S B P

Hence u, = f(n) — 2f(n — 1) + f(n — 2) with f(n) = 1/[2(n + 2)]. If we write out the sum,
expressing each term u, in this form, we find that most terms cancel and the sum is given
by

1 1 1 1
SN:f(N)*f(Nfl)*f(o)""f(*l)—Z‘f’i <N7+27N7+1><
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4.2 SUMMATION OF SERIES

4.2.5 Series involving natural numbers

Series consisting of the natural numbers 1, 2, 3, ..., or the square or cube of these
numbers, occur frequently and deserve a special mention. Let us first consider
the sum of the first N natural numbers,

N
Sy=1+2+3+-+N=> n
n=1

This is clearly an arithmetic series with first term a = 1 and common difference
d = 1. Therefore, from (4.2), Sy = %N(N +1).
Next, we consider the sum of the squares of the first N natural numbers:

N
SN=12+22+32+...+N2=Zn2,
n=1

which may be evaluated using the difference method. The nth term in the series
is u, = n?, which we need to express in the form f(n) — f(n — 1) for some function
f(n). Consider the function

fm=nn+DH2n+1) = fmn—1)=m—-Dn2n—1).
For this function f(n) — f(n — 1) = 6n%, and so we can write
Uun = g[f(n) = f(n —1)].
Therefore, by the difference method,
Sy = g[f(N) = f(0)] = gN(N + 2N + 1).

Finally, we calculate the sum of the cubes of the first N natural numbers,
N
Sy=1P+2 43+ + N =>"n,
n=1

again using the difference method. Consider the function
f)y=Mm+1P = fn—1)=[n—1n],

for which f(n) — f(n — 1) = 4n’. Therefore we can write the general nth term of
the series as

up = 3[f(n) = f(n—=1)],
and using the difference method we find
Sy = JLf(N) = f(O)] = FN*(N + 1)
Note that this is the square of the sum of the natural numbers, i.e.
N N 2
UM
n=1 n=1
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»Sum the series
N

> (4 1)+ 3).

n=1

The nth term in this series is
up=m+1)m+3)=n>+4n+3,

and therefore we can write

N N
D+ Dn+3)=> (" +4n+3)

n=1 n=1

N N N
= +4> n+d 3

n=1 n=1 n=1
=IN(N+DQ2N+1)+4 x IN(N+1)+3N
= IN(2N?+ 15N +31). <

4.2.6 Transformation of series

A complicated series may sometimes be summed by transforming it into a
familiar series for which we already know the sum, perhaps a geometric series
or the Maclaurin expansion of a simple function (see subsection 4.6.3). Various
techniques are useful, and deciding which one to use in any given case is a matter
of experience. We now discuss a few of the more common methods.

The differentiation or integration of a series is often useful in transforming an
apparently intractable series into a more familiar one. If we wish to differentiate
or integrate a series that already depends on some variable then we may do so
in a straightforward manner.

»Sum the series

X4
S =30n * 2y 3@

Dividing both sides by x we obtain
S(x) X} . x* . X3 .
x 3000 41 T 520 ’
which is easily differentiated to give
d [S(x) X2 X xr X
dx | x or 1! 2! 3!
Recalling the Maclaurin expansion of exp x given in subsection 4.6.3, we recognise that
the RHS is equal to x?exp x. Having done so, we can now integrate both sides to obtain

S(x)/x = /x2 exp x dx.

o
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Integrating the RHS by parts we find
S(x)/x = x> expx — 2xexpx + 2expx + ¢,

where the value of the constant of integration ¢ can be fixed by the requirement that
S(x)/x =0 at x = 0. Thus we find that ¢ = —2 and that the sum is given by

S(x) = x*expx — 2x% exp x + 2xexp x — 2x. «

Often, however, we require the sum of a series that does not depend on a
variable. In this case, in order that we may differentiate or integrate the series,
we define a function of some variable x such that the value of this function is
equal to the sum of the series for some particular value of x (usually at x = 1).

»Sum the series

2 3 4
P LA T
S=1+3+m+5m+

Let us begin by defining the function
FX)=142x+32+4x° + -,
so that the sum S = f(1/2). Integrating this function we obtain

/f(x)dx:x+x2+x3+---,

which we recognise as an infinite geometric series with first term a = x and common ratio
r = x. Therefore, from (4.4), we find that the sum of this series is x/(1 —x). In other words

[ ax =

RY

1—x’

so that f(x) is given by

= (75) = =

X (1—x)*

The sum of the original series is therefore S = f(1/2) = 4. «

Aside from differentiation and integration, an appropriate substitution can
sometimes transform a series into a more familiar form. In particular, series with
terms that contain trigonometric functions can often be summed by the use of
complex exponentials.

»Sum the series
cos20  cos30

S(0) =1+ cosf+ —5— + —

Replacing the cosine terms with a complex exponential, we obtain
exp2if  exp3if }

2!+3!

(expif)?*  (expif)?
T TR

S(0) = Re{l +expif +

=Re{1+expi0+

123



SERIES AND LIMITS

Again using the Maclaurin expansion of exp x given in subsection 4.6.3, we notice that
S(0) = Re [exp(expif)] = Re [exp(cos O + isin )]
= Re {[exp(cos 0)][exp(isin 0)]} = [exp(cos 0)]Re [exp(isin 0)]
= [exp(cos 0)][cos(sin 0)]. <

4.3 Convergence of infinite series

Although the sums of some commonly occurring infinite series may be found,
the sum of a general infinite series is usually difficult to calculate. Nevertheless,
it is often useful to know whether the partial sum of such a series converges to
a limit, even if the limit cannot be found explicitly. As mentioned at the end of
section 4.1, if we allow N to tend to infinity, the partial sum

N
SN = Z Uy
n=1

of a series may tend to a definite limit (i.e. the sum S of the series), or increase
or decrease without limit, or oscillate finitely or infinitely.

To investigate the convergence of any given series, it is useful to have available
a number of tests and theorems of general applicability. We discuss them below;
some we will merely state, since once they have been stated they become almost
self-evident, but are no less useful for that.

4.3.1 Absolute and conditional convergence

Let us first consider some general points concerning the convergence, or otherwise,
of an infinite series. In general an infinite series ) u, can have complex terms,
and in the special case of a real series the terms can be positive or negative. From
any such series, however, we can always construct another series » [u,| in which
each term is simply the modulus of the corresponding term in the original series.
Then each term in the new series will be a positive real number.

If the series Y |u,| converges then > u, also converges, and ) u, is said to be
absolutely convergent, i.e. the series formed by the absolute values is convergent.
For an absolutely convergent series, the terms may be reordered without affecting
the convergence of the series. However, if 3 |u,| diverges whilst Y u, converges
then " u, is said to be conditionally convergent. For a conditionally convergent
series, rearranging the order of the terms can affect the behaviour of the sum
and, hence, whether the series converges or diverges. In fact, a theorem due
to Riemann shows that, by a suitable rearrangement, a conditionally convergent
series may be made to converge to any arbitrary limit, or to diverge, or to oscillate
finitely or infinitely! Of course, if the original series ) u, consists only of positive
real terms and converges then automatically it is absolutely convergent.
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4.3.2 Convergence of a series containing only real positive terms

As discussed above, in order to test for the absolute convergence of a series
> uy, we first construct the corresponding series Y |u,| that consists only of real
positive terms. Therefore in this subsection we will restrict our attention to series
of this type.

We discuss below some tests that may be used to investigate the convergence of
such a series. Before doing so, however, we note the following crucial consideration.
In all the tests for, or discussions of, the convergence of a series, it is not what
happens in the first ten, or the first thousand, or the first million terms (or any
other finite number of terms) that matters, but what happens ultimately.

Preliminary test

A necessary but not sufficient condition for a series of real positive terms Y u,
to be convergent is that the term u, tends to zero as n tends to infinity, i.e. we
require

lim u, = 0.

n—0o0

If this condition is not satisfied then the series must diverge. Even if it is satisfied,
however, the series may still diverge, and further testing is required.

Comparison test

The comparison test is the most basic test for convergence. Let us consider two
series Y u, and Y v, and suppose that we know the latter to be convergent (by
some earlier analysis, for example). Then, if each term u, in the first series is less
than or equal to the corresponding term v, in the second series, for all n greater
than some fixed number N that will vary from series to series, then the original
series > uy, is also convergent. In other words, if > v, is convergent and

u, < v, forn> N,

then Y u, converges.
However, if v, diverges and u, > v, for all n greater than some fixed number
then ) u, diverges.

» Determine whether the following series converges:

=1 1 1,1, 1
an+1 gt gttt 4.7)

Let us compare this series with the series

Sholilidi oyt
n! 0l 1! METREET h !
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which is merely the series obtained by setting x = 1 in the Maclaurin expansion of exp x
(see subsection 4.6.3), i.e.
1 1 1
exp(l):e=1+]—!+2_!+§+..._
Clearly this second series is convergent, since it consists of only positive terms and has a
finite sum. Thus, since each term u, in the series (4.7) is less than the corresponding term
1/n! in (4.8), we conclude from the comparison test that (4.7) is also convergent. <

D’Alembert’s ratio test

The ratio test determines whether a series converges by comparing the relative
magnitude of successive terms. If we consider a series > u, and set

p = lim (H> : (4.9)

n—oo un

then if p < 1 the series is convergent; if p > 1 the series is divergent; if p = 1
then the behaviour of the series is undetermined by this test.
To prove this we observe that if the limit (4.9) is less than unity, i.e. p < 1 then
we can find a value r in the range p < r < 1 and a value N such that
bt
url

for all n > N. Now the terms u, of the series that follow uy are
UN+1, UN+2, UN+3, cees
and each of these is less than the corresponding term of
ruy,  Fuy,  Puy, ... (4.10)

However, the terms of (4.10) are those of a geometric series with a common
ratio r that is less than unity. This geometric series consequently converges and
therefore, by the comparison test discussed above, so must the original series
> u,. An analogous argument may be used to prove the divergent case when
p> 1.

» Determine whether the following series converges:

1 1 1 1 > 1 1
TR TR TR TR TR TR TR

8

As mentioned in the previous example, this series may be obtained by setting x = 1 in the

Maclaurin expansion of exp x, and hence we know already that it converges and has the

sum exp(l) = e. Nevertheless, we may use the ratio test to confirm that it converges.
Using (4.9), we have

n! 1
—lim | — | —fim [ — ) = 411
P n'fi{(nﬂ)!} ,,L@<n+1> 0 (4.11)

and since p < 1, the series converges, as expected. <
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Ratio comparison test

As its name suggests, the ratio comparison test is a combination of the ratio and
comparison tests. Let us consider the two series Y u, and > v, and assume that
we know the latter to be convergent. It may be shown that if

Up+1 < Un41

u}‘l UVI

for all n greater than some fixed value N then 3 u, is also convergent.
Similarly, if
Unt1 < Un+1

Uy by

for all sufficiently large n, and >_ v, diverges then > u, also diverges.

» Determine whether the following series converges:

= i 1 1
ZW:1+?+§+M.

n=1

In this case the ratio of successive terms, as n tends to infinity, is given by

2 2
. n! - . 1 -
R=1lm|—| =Ilm s
n—ow (n—‘,—l)' n—o\n4+1

which is less than the ratio seen in (4.11). Hence, by the ratio comparison test, the series
converges. (It is clear that this series could also be found to be convergent using the ratio
test.) «

Quotient test

The quotient test may also be considered as a combination of the ratio and
comparison tests. Let us again consider the two series > u, and > v,, and define
p as the limit

p = lim (‘L) . (4.12)

n—o0 \ U,

Then, it can be shown that:

(i) if p # O but is finite then > u, and v, either both converge or both
diverge;

(i) if p =0 and Y v, converges then ) u, converges;

(iii) if p = o0 and Y v, diverges then > u, diverges.
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» Given that the series ., 1/n diverges, determine whether the following series converges:

Z 42 —n—3

4.1
n +2n (4.13)

n=1

If we set u, = (4n> —n — 3)/(n’ + 2n) and v, = 1/n then the limit (4.12) becomes
2 3 32
(4n* —n—3)/(n’ + 2n) — lim 4n° —n* —3n
1/n n+2n

Since p is finite but non-zero and ) v, diverges, from (i) above > u, must also diverge. «

p = lim =

n—o0 n—oo

Integral test
The integral test is an extremely powerful means of investigating the convergence
of a series Y u,. Suppose that there exists a function f(x) which monotonically
decreases for x greater than some fixed value x¢ and for which f(n) = u,, i.e. the
value of the function at integer values of x is equal to the corresponding term
in the series under investigation. Then it can be shown that, if the limit of the
integral

lim / " £(x)dx

N—w

exists, the series Y u, is convergent. Otherwise the series diverges. Note that the
integral defined here has no lower limit; the test is sometimes stated with a lower
limit, equal to unity, for the integral, but this can lead to unnecessary difficulties.

» Determine whether the following series converges:

i; —4+4+f+i+
£~ (n—3/2) - 9 ' 25 :

Let us consider the function f(x) = (x —3/2)2. Clearly f(n) = u, and f(x) monotonically
decreases for x > 3/2. Applying the integral test, we consider

lim ! L ix— lim ! =0
Now) (x=3/22 Nox\N—=3/2)
Since the limit exists the series converges. Note, however, that if we had included a lower
limit, equal to unity, in the integral then we would have run into problems, since the
integrand diverges at x = 3/2. «
The integral test is also useful for examining the convergence of the Riemann
zeta series. This is a special series that occurs regularly and is of the form
1
ﬁ.
n=1
It converges for p > 1 and diverges if p < 1. These convergence criteria may be
derived as follows.
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Using the integral test, we consider
N 1—
. 1 . NP
lim —dx = lim s
N-ow xP Noow \ 1 — p

and it is obvious that the limit tends to zero for p > 1 and to oo for p < 1.

Cauchy’s root test

Cauchy’s root test may be useful in testing for convergence, especially if the nth
terms of the series contains an nth power. If we define the limit

p = lim (u,)"",
n—o0

then it may be proved that the series ) u, converges if p < 1. If p > 1 then the
series diverges. Its behaviour is undetermined if p = 1.

» Determine whether the following series converges:

i1’1—1+1+1+
n) 4 27 ’

n=1

Using Cauchy’s root test, we find

and hence the series converges. <

Grouping terms
We now consider the Riemann zeta series, mentioned above, with an alternative
proof of its convergence that uses the method of grouping terms. In general there
are better ways of determining convergence, but the grouping method may be
used if it is not immediately obvious how to approach a problem by a better
method.
First consider the case where p > 1, and group the terms in the series as

follows:
g 1 1,1 1 1

Now we can see that each bracket of this series is less than each term of the
geometric series

. . . . —1 . .
This geometric series has common ratio r = (%)‘" ; since p > 1, it follows that

r < 1 and that the geometric series converges. Then the comparison test shows
that the Riemann zeta series also converges for p > 1.
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The divergence of the Riemann zeta series for p < 1 can be seen by first
considering the case p = 1. The series is

1 1 1
SN—1+§+§+Z+""

which does not converge, as may be seen by bracketing the terms of the series in
groups in the following way:

N
SN=;un=l+<;>+<;+i>+(é+é+;+;>+~-.
The sum of the terms in each bracket is > % and, since as many such groupings
can be made as we wish, it is clear that Sy increases indefinitely as N is increased.

Now returning to the case of the Riemann zeta series for p < 1, we note that
each term in the series is greater than the corresponding one in the series for
which p = 1. In other words 1/n” > 1/n for n > 1, p < 1. The comparison test
then shows us that the Riemann zeta series will diverge for all p < 1.

4.3.3 Alternating series test

The tests discussed in the last subsection have been concerned with determining
whether the series of real positive terms . |u,| converges, and so whether " u,
is absolutely convergent. Nevertheless, it is sometimes useful to consider whether
a series is merely convergent rather than absolutely convergent. This is especially
true for series containing an infinite number of both positive and negative terms.
In particular, we will consider the convergence of series in which the positive and
negative terms alternate, i.e. an alternating series.
An alternating series can be written as
o0
Z(*l)nﬂun =up—uyt+uz—ugt+us—---,
n=1
with all u, > 0. Such a series can be shown to converge provided (i) u, — 0 as
n — oo and (ii) u, < u,_y for all n > N for some finite N. If these conditions are
not met then the series oscillates.
To prove this, suppose for definiteness that N is odd and consider the series
starting at uy. The sum of its first 2m terms is

Som = (un — uny1) + (uny2 — ung3) + -+ (UNT2m—2 — UN12m—1)-

By condition (ii) above, all the parentheses are positive, and so Sy, increases as
m increases. We can also write, however,

Som = un — (Un+1 — Un+2) — - — (UN+2m—3 — UN+2m—2) — UN+2m—1>

and since each parenthesis is positive, we must have S,,, < uy. Thus, since S,
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is always less than uy for all m and u, — 0 as n — oo, the alternating series
converges. It is clear that an analogous proof can be constructed in the case
where N is even.

» Determine whether the following series converges:

©

1 1 1
_ n+1_: _ ...
> (=1 Sl .

n=1

This alternating series clearly satisfies conditions (i) and (ii) above and hence converges.
However, as shown above by the method of grouping terms, the corresponding series with
all positive terms is divergent. <

4.4 Operations with series

Simple operations with series are fairly intuitive, and we discuss them here only
for completeness. The following points apply to both finite and infinite series
unless otherwise stated.

(i) If > u, = S then > ku, = kS where k is any constant.

(i) If Y u, =S and > v, =T then > (u, +v,) =S+ T.

(iil) If Y u, = S then a+ > u, = a+S. A simple extension of this trivial result
shows that the removal or insertion of a finite number of terms anywhere
in a series does not affect its convergence.

(iv) If the infinite series > u, and > v, are both absolutely convergent then
the series > w,, where

Wy = ULy + UgUp—1 + -+ - + Upvy,

is also absolutely convergent. The series Y wy, is called the Cauchy product
of the two original series. Furthermore, if Y u, converges to the sum S
and > v, converges to the sum T then > w, converges to the sum ST.
It is not true in general that term-by-term differentiation or integration of
a series will result in a new series with the same convergence properties.

(v

-

4.5 Power series
A power series has the form
P(x) =ay+ax+ax*+a;x>+---,

where ag, a1, a»,as etc. are constants. Such series regularly occur in physics and
engineering and are useful because, for |x| < 1, the later terms in the series may
become very small and be discarded. For example the series

P(xX)=14+x+x>+x3+---,
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although in principle infinitely long, in practice may be simplified if x happens to
have a value small compared with unity. To see this note that P(x) for x = 0.1
has the following values: 1, if just one term is taken into account; 1.1, for two
terms; 1.11, for three terms; 1.111, for four terms, etc. If the quantity that it
represents can only be measured with an accuracy of two decimal places, then all
but the first three terms may be ignored, i.e. when x = 0.1 or less

P(x)=14+x+x*4+0(x*) ~1+x+x%

This sort of approximation is often used to simplify equations into manageable
forms. It may seem imprecise at first but is perfectly acceptable insofar as it
matches the experimental accuracy that can be achieved.

The symbols O and ~ used above need some further explanation. They are
used to compare the behaviour of two functions when a variable upon which
both functions depend tends to a particular limit, usually zero or infinity (and
obvious from the context). For two functions f(x) and g(x), with g positive, the
formal definitions of the above symbols are as follows:

(i) If there exists a constant k such that |f| < kg as the limit is approached
then f = O(g).

(ii) If as the limit of x is approached f/g tends to a limit [, where [ # 0, then
f ~ Ig. The statement f ~ g means that the ratio of the two sides tends
to unity.

4.5.1 Convergence of power series

The convergence or otherwise of power series is a crucial consideration in practical
terms. For example, if we are to use a power series as an approximation, it is
clearly important that it tends to the precise answer as more and more terms of
the approximation are taken. Consider the general power series

P(x)=ag+ aix 4+ ax*> + - .
Using d’Alembert’s ratio test (see subsection 4.3.2), we see that P(x) converges

absolutely if

Ap+1 App1
T x -

a}‘l

= |x| lim <1

p = lim
n—oo n—oo

n

Thus the convergence of P(x) depends upon the value of x, i.e. there is, in general,
a range of values of x for which P(x) converges, an interval of convergence. Note
that at the limits of this range p = 1, and so the series may converge or diverge.
The convergence of the series at the end-points may be determined by substituting
these values of x into the power series P(x) and testing the resulting series using
any applicable method (discussed in section 4.3).
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» Determine the range of values of x for which the following power series converges:

P(x)=1+2x+4x> +8x>+---.

By using the interval-of-convergence method discussed above,

n+1
=1li >
p = lim | —x

n—ow

= [2x],

and hence the power series will converge for |x| < 1/2. Examining the end-points of the
interval separately, we find

P(1/2)=141+1+4--,
P(—1/2)=1—1+41—---.

Obviously P(1/2) diverges, while P(—1/2) oscillates. Therefore P(x) is not convergent at
either end-point of the region but is convergent for —1 < x < 1. «

The convergence of power series may be extended to the case where the
parameter z is complex. For the power series

P(z)=a0+alz+a222+-~~ 5
we find that P(z) converges if

Ap+1
—2Z
an

An+1
an

p = lim <1

n—o0

= |z| lim

n—ao0

We therefore have a range in |z| for which P(z) converges, i.e. P(z) converges
for values of z lying within a circle in the Argand diagram (in this case centred
on the origin of the Argand diagram). The radius of the circle is called the
radius of convergence: if z lies inside the circle, the series will converge whereas
if z lies outside the circle, the series will diverge; if, though, z lies on the circle
then the convergence must be tested using another method. Clearly the radius of
convergence R is given by 1/R = lim,_,, |ap+1/ay].

» Determine the range of values of z for which the following complex power series converges:

Z3

2
V4 Z
PE=il = s = o dhese.

We find that p = |z/2|, which shows that P(z) converges for |z| < 2. Therefore the circle
of convergence in the Argand diagram is centred on the origin and has a radius R = 2.
On this circle we must test the convergence by substituting the value of z into P(z) and
considering the resulting series. On the circle of convergence we can write z = 2expif.
Substituting this into P(z), we obtain

2expif n 4exp2i
2 4
=1—expif + [expif]* —---,

Pz)=1—

which is a complex infinite geometric series with first term a = 1 and common ratio
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r = —expi0. Therefore, on the the circle of convergence we have
1
P(z)= ———.
@ 1+expif
Unless 0 = = this is a finite complex number, and so P(z) converges at all points on the
circle |z| = 2 except at 0 = © (i.e. z = —2), where it diverges. Note that P(z) is just the
binomial expansion of (1 + z/2)~!, for which it is obvious that z = —2 is a singular point.

In general, for power series expansions of complex functions about a given point in the
complex plane, the circle of convergence extends as far as the nearest singular point. This
is discussed further in chapter 24. «

Note that the centre of the circle of convergence does not necessarily lie at the
origin. For example, applying the ratio test to the complex power series
1 (z—1? (z—1)

.
P(z) =1
@=lt—F— =gt t.

we find that for it to converge we require |(z — 1)/2| < 1. Thus the series converges
for z lying within a circle of radius 2 centred on the point (1,0) in the Argand
diagram.

4.5.2 Operations with power series

The following rules are useful when manipulating power series; they apply to
power series in a real or complex variable.

(1) If two power series P(x) and Q(x) have regions of convergence that overlap
to some extent then the series produced by taking the sum, the difference or the
product of P(x) and Q(x) converges in the common region.

(i1) If two power series P(x) and Q(x) converge for all values of x then one
series may be substituted into the other to give a third series, which also converges
for all values of x. For example, consider the power series expansions of sin x and
e~ given below in subsection 4.6.3,

. xS X
smx=x—3!+§—ﬁ+
x2ox3 X
X — —_— —_— —_— ...
e—1+x+2!+3!+4!+ >

both of which converge for all values of x. Substituting the series for sin x into
that for ¢* we obtain
2 4 5
sinx X 3x 8x
S TR TH
which also converges for all values of x.

If, however, either of the power series P(x) and Q(x) has only a limited region
of convergence, or if they both do so, then further care must be taken when
substituting one series into the other. For example, suppose Q(x) converges for
all x, but P(x) only converges for x within a finite range. We may substitute

+...,
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Q(x) into P(x) to obtain P(Q(x)), but we must be careful since the value of Q(x)
may lie outside the region of convergence for P(x), with the consequence that the
resulting series P(Q(x)) does not converge.

(iii) If a power series P(x) converges for a particular range of x then the series
obtained by differentiating every term and the series obtained by integrating every
term also converge in this range.

This is easily seen for the power series

P(x) =ap+ aix +ax*>+---,

which converges if |x| < lim,_ |a,/a,+1| = k. The series obtained by differenti-
ating P(x) with respect to x is given by

dp
— =y +2ax +3a3x> + - -
dx
and converges if
. na
<lm|—| =
‘X| "I_’HO‘IC (n + 1)al1+1

Similarly the series obtained by integrating P(x) term by term,

2 3
/P(x)dx=a0x+%+a23x +oe

converges if
(n+2)ay
(n+ Dant

So, series resulting from differentiation or integration have the same interval of
convergence as the original series. However, even if the original series converges
at either end-point of the interval, it is not necessarily the case that the new series
will do so. The new series must be tested separately at the end-points in order
to determine whether it converges there. Note that although power series may be
integrated or differentiated without altering their interval of convergence, this is
not true for series in general.

It is also worth noting that differentiating or integrating a power series term
by term within its interval of convergence is equivalent to differentiating or
integrating the function it represents. For example, consider the power series
expansion of sinx,

x| < lim
n—ow

3 xS X7

. X
s1nx=x—§+§fﬁ+~~, (4.14)
which converges for all values of x. If we differentiate term by term, the series

becomes

which is the series expansion of cos x, as we expect.
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4.6 Taylor series

Taylor’s theorem provides a way of expressing a function as a power series in Xx,
known as a Taylor series, but it can be applied only to those functions that are
continuous and differentiable within the x-range of interest.

4.6.1 Taylor’s theorem

Suppose that we have a function f(x) that we wish to express as a power series
in x — a about the point x = a. We shall assume that, in a given x-range, f(x)
is a continuous, single-valued function of x having continuous derivatives with
respect to x, denoted by f’(x), f”(x) and so on, up to and including "~V (x). We
shall also assume that f(")(x) exists in this range.

From the equation following (2.31) we may write

a+h

f'x)dx = fla+h) — f(a),

a

where a, a + h are neighbouring values of x. Rearranging this equation, we may
express the value of the function at x = a + h in terms of its value at a by

a+h

fla+h) = f(a)+ £'(x) dx. (4.15)

a

A first approximation for f(a + h) may be obtained by substituting f'(a) for
f'(x) in (4.15), to obtain

fla+h)~ f(a) + hf'(a).

This approximation is shown graphically in figure 4.1. We may write this first
approximation in terms of x and a as

) = fa) + (x — a)f'(a),
and, in a similar way,

f'x) = f'(a) + (x — a)f "(a),
() = f"(a) + (x — a)f"(a),

and so on. Substituting for f’(x) in (4.15), we obtain the second approximation:
a+h
fla+h) =~ fla)+ / [f'(a) + (x — a)f"(a)] dx

! ]12 1!
~ fla) +hf(a)+ 51 (a).

We may repeat this procedure as often as we like (so long as the derivatives
of f(x) exist) to obtain higher-order approximations to f(a + h); we find the
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f(x)

Figure 4.1 The first-order Taylor series approximation to a function f(x).
The slope of the function at P, i.e. tan6, equals f’(a). Thus the value of the
function at Q, f(a + h), is approximated by the ordinate of R, f(a)+ hf’(a).

(n — 1)th-order approximation® to be

hnfl
(n—1)!

]2
fla+h) = f(a) + hf'(a) + %f”(aH o+ f" ). (4.16)

As might have been anticipated, the error associated with approximating f(a+h)
by this (n — 1)th-order power series is of the order of the next term in the series.
This error or remainder can be shown to be given by

for some ¢ that lies in the range [a,a + h]. Taylor’s theorem then states that we
may write the equality

h(nfl)

(n—1
!+ Rl

2
fla+h) = f(a)+ hf'(a) + %f”(a) +---
: (4.17)

The theorem may also be written in a form suitable for finding f(x) given
the value of the function and its relevant derivatives at x = a, by substituting

§ The order of the approximation is simply the highest power of & in the series. Note, though, that
the (n — 1)th-order approximation contains n terms.
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X = a+ h in the above expression. It then reads

—_ )2 _ 1
109 = @)+ (x = af @ + S5+ S0+ Ry,
(4.18)
where the remainder now takes the form
Ry = E= e,

and ¢ lies in the range [a,x]. Each of the formulae (4.17), (4.18) gives us the
Taylor expansion of the function about the point x = a. A special case occurs
when a = 0. Such Taylor expansions, about x = 0, are called Maclaurin series.

Taylor’s theorem is also valid without significant modification for functions
of a complex variable (see chapter 24). The extension of Taylor’s theorem to
functions of more than one variable is given in chapter 5.

For a function to be expressible as an infinite power series we require it to be
infinitely differentiable and the remainder term R, to tend to zero as n tends to
infinity, i.e. lim,_, R, = 0. In this case the infinite power series will represent the
function within the interval of convergence of the series.

» Expand f(x) = sinx as a Maclaurin series, i.e. about x = 0.

We must first verify that sin x may indeed be represented by an infinite power series. It is
easily shown that the nth derivative of f(x) is given by

" (x) = sin (x + %) .

Therefore the remainder after expanding f(x) as an (n — 1)th-order polynomial about
x =0 is given by

R,(x) = X sin (5 + @) ,

n! 2
where ¢ lies in the range [0, x]. Since the modulus of the sine term is always less than or
equal to unity, we can write |R,(x)| < |x"|/n!. For any particular value of x, say x = ¢,
Ry(¢) —» 0 as n — oo. Hence lim,_,,, R,(x) = 0, and so sinx can be represented by an
infinite Maclaurin series.
Evaluating the function and its derivatives at x = 0 we obtain

f(0) =sin0=0,
f'(0)=sin(n/2) = 1,
f"(0) =sinm =0,
f"(0) =sin(3n/2) = —1,
and so on. Therefore, the Maclaurin series expansion of sinx is given by
. XX
Sinx = x — Bl + 51

Note that, as expected, since sin x is an odd function, its power series expansion contains
only odd powers of x. «
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4.6 TAYLOR SERIES

We may follow a similar procedure to obtain a Taylor series about an arbitrary
point x = a.

| » Expand f(x) = cosx as a Taylor series about x = 1/3.

As in the above example, it is easily shown that the nth derivative of f(x) is given by
(n) — n_n
(x) cos(x+ 2 )
Therefore the remainder after expanding f(x) as an (n — 1)th-order polynomial about
x =m/3 is given by
(x —m/3)" nm
Rl'l 7 =0 - 9
x) n! cos (é + 2 )

where ¢ lies in the range [n/3,x]. The modulus of the cosine term is always less than or
equal to unity, and so |R,(x)| < |[(x—m/3)"|/n!. As in the previous example, lim,_,., R,(x) =
0 for any particular value of x, and so cos x can be represented by an infinite Taylor series
about x = /3.
Evaluating the function and its derivatives at x = n/3 we obtain

f(m/3) = cos(n/3) = 1/2,

f'(m/3) = cos(5n/6) = —/3/2,

f"(=/3) = cos(4r/3) = —1/2,

and so on. Thus the Taylor series expansion of cosx about x = 7/3 is given by

2
(x—n/3) n

CosXx = 2

. 4

1 3 1
5‘%("‘"/3)‘5

4.6.2 Approximation errors in Taylor series

In the previous subsection we saw how to represent a function f(x) by an infinite
power series, which is exactly equal to f(x) for all x within the interval of
convergence of the series. However, in physical problems we usually do not want
to have to sum an infinite number of terms, but prefer to use only a finite number
of terms in the Taylor series to approximate the function in some given range
of x. In this case it is desirable to know what is the maximum possible error
associated with the approximation.

As given in (4.18), a function f(x) can be represented by a finite (n— 1)th-order
power series together with a remainder term such that
(X _ a)n—l

fflay+---+ Wf(n_”(a) + Ru(x),

Y
109 = 1@+~ a)f @)+ S5

where
Ryx) = X9 g
n!
and ¢ lies in the range [a, x]. R,(x) is the remainder term, and represents the error

in approximating f(x) by the above (n — 1)th-order power series. Since the exact
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SERIES AND LIMITS

value of ¢ that satisfies the expression for R,(x) is not known, an upper limit on
the error may be found by differentiating R,(x) with respect to ¢ and equating
the derivative to zero in the usual way for finding maxima.

» Expand f(x) = cosx as a Taylor series about x = 0 and find the error associated with
using the approximation to evaluate cos(0.5) if only the first two non-vanishing terms are
taken. (Note that the Taylor expansions of trigonometric functions are only valid for angles
measured in radians.)

Evaluating the function and its derivatives at x = 0, we find
f(0)=cos0 =1,
f(0) =—sin0 =0,
17(0) = —cos0 = —1,
f”(0) =sin0 = 0.
So, for small |x|, we find from (4.18)

x2

x~1——.
cos x 3

Note that since cosx is an even function, its power series expansion contains only even
powers of x. Therefore, in order to estimate the error in this approximation, we must
consider the term in x*, which is the next in the series. The required derivative is f(x)
and this is (by chance) equal to cos x. Thus, adding in the remainder term Ry(x), we find
2 4
X X
cosx =1—— + —cos¢,
2 4! )
where ¢ lies in the range [0, x]. Thus, the maximum possible error is x*/4!, since cos &
cannot exceed unity. If x = 0.5, taking just the first two terms yields cos(0.5) ~ 0.875 with
a predicted error of less than 0.00260. In fact cos(0.5) = 0.87758 to 5 decimal places. Thus,
to this accuracy, the true error is 0.00258, an error of about 0.3%. «

4.6.3 Standard Maclaurin series

It is often useful to have a readily available table of Maclaurin series for standard
elementary functions, and therefore these are listed below.

XX X
sinx = x ?—I—; ?—l— for —o0 < x < o0,
_ x> x* x® f
COS X = fﬁ—f—m—a—k-- or —oo < x < 00,
3 5 7
e X XX _
tan” x = x 3—{—5 7—{— for —1<x<1,
x2 X3 Xt
X — —_— —_— —_— .- —_— (
e —1+x+2!—|—3!+4!+ for —oo < x < o0,
2 3 4
1n(1+x)=x—”2+%—%+... for —1<x<l,
2 3
(1-‘rx)"=1-‘rnx+n(n—1)%+n(n—l)(n—2);+~~ for —o0 < x < 0.
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4.7 EVALUATION OF LIMITS

These can all be derived by straightforward application of Taylor’s theorem to
the expansion of a function about x = 0.

4.7 Evaluation of limits

The idea of the limit of a function f(x) as x approaches a value a is fairly intuitive,
though a strict definition exists and is stated below. In many cases the limit of
the function as x approaches a will be simply the value f(a), but sometimes this
is not so. Firstly, the function may be undefined at x = a, as, for example, when

which takes the value 0/0 at x = 0. However, the limit as x approaches zero
does exist and can be evaluated as unity using I'Hopital’s rule below. Another
possibility is that even if f(x) is defined at x = a its value may not be equal to the
limiting value lim,_,, f(x). This can occur for a discontinuous function at a point
of discontinuity. The strict definition of a limit is that if lim,_, f(x) = [ then
for any number € however small, it must be possible to find a number n such that
|f(x)—I| < € whenever |x—a| < n. In other words, as x becomes arbitrarily close to
a, f(x) becomes arbitrarily close to its limit, /. To remove any ambiguity, it should
be stated that, in general, the number n will depend on both e and the form of f(x).
The following observations are often useful in finding the limit of a function.

(i) A limit may be 4oo. For example as x — 0, 1/x> — oo.

(ii) A limit may be approached from below or above and the value may be
different in each case. For example consider the function f(x) = tan x. As x tends
to n/2 from below f(x) — oo, but if the limit is approached from above then
f(x) > —oo. Another way of writing this is

lim tanx = oo, lim tanx = —oo.

T (I
,\4)2 X—?z

(iii) It may ease the evaluation of limits if the function under consideration is
split into a sum, product or quotient. Provided that in each case a limit exists, the
rules for evaluating such limits are as follows.

(a) lim {f(x) + g(x)} = lim f(x) + lim g(x).
X—a X—a X—a

(b) lim {f(x)g(x)} = lim f(x) lim g(x).
X—a X—a X—a
. lim,_, .

(c) lim 1) _ Laf(x), provided that
xoag(x)  limy, g(x)
the numerator and denominator are
not both equal to zero or infinity.

Examples of cases (a)—(c) are discussed below.
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SERIES AND LIMITS

» Evaluate the limits

lin"li(x2 +2x°), l’ing)(x cos X), lim —.

Using (a) above,
lin}(xz +2x%) = lim X +1im 2x3 = 3.

x—1

Using (b),
ljrrll](x cosx) = ljmxljrr(l)cosx =0x1=0.
Using (c),
| sinx limy_, /> sin x L2 <
xor2 x lime,px w20

(iv) Limits of functions of x that contain exponents that themselves depend on
x can often be found by taking logarithms.

. a\"
lL“;(“;) :

2\"
r=(1-%)

and consider the logarithm of the required limit, i.e.
2
limIny = lim [len (1 - ;ﬂ .

Using the Maclaurin series for In(1 4 x) given in subsection 4.6.3, we can expand the
logarithm as a series and obtain

2 4
' y—lim |2 (=L -8 )] =2
anllnyf,\l»gg {x < e 2x4+ >] a.

Therefore, since lim,_,., Iny = —a? it follows that lim,_,., y = exp(—a?). <«

» Evaluate the limit

Let us define

(v) UHopital’s rule may be used; it is an extension of (iii)(c) above. In cases
where both numerator and denominator are zero or both are infinite, further
consideration of the limit must follow. Let us first consider lim,_, f(x)/g(x),
where f(a) = g(a) = 0. Expanding the numerator and denominator as Taylor
series we obtain

() _ f@)+ (x—a)f'(a) + [(x —aP/21f"(@) + - --

g(x)  gla)+ (x —a)g'(a) + [(x —a)?/2!]g"(a) + - -
However, f(a) = g(a) =0 so
f(x) _ f'@)+[(x —a)/2!]f"(a) + - --

g(x)  gl@)+(x—a)/2lg"(a)+ -
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4.7 EVALUATION OF LIMITS

Therefore we find
) _ [
lim 2 =
g gla)

provided f’(a) and g'(a) are not themselves both equal to zero. If, however,
f'(a) and g'(a) are both zero then the same process can be applied to the ratio
f'(x)/g'(x) to yield

o F0) _ 1@

im = ,
x—ag(x)  g’(a)

provided that at least one of f”(a) and g”(a) is non-zero. If the original limit does
exist then it can be found by repeating the process as many times as is necessary
for the ratio of corresponding nth derivatives not to be of the indeterminate form
0/0, ie.

fx) _ f"a)

m = .
Sag(x)  g"(a)

» Evaluate the limit
. sinx
lim —.
x—0 X

We first note that if x = 0, both numerator and denominator are zero. Thus we apply
I'Hopital’s rule: differentiating, we obtain

lirr(l)(sin x/x) = lﬁrr(l)(cosx/l) =1 <

So far we have only considered the case where f(a) = g(a) = 0. For the case
where f(a) = g(a) = co we may still apply 'HOpital’s rule by writing
1) _ iy Vel),
xoag(x)  xoal/f(x)
which is now of the form 0/0 at x = a. Note also that I'Hopital’s rule is still

valid for finding limits as x — o0, i.e. when a = oo. This is easily shown by letting
y = 1/x as follows:

) (1)
e S gy
=)y
= 1)
)
~ W g/y)
)

= g/(x)’
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Summary of methods for evaluating limits

To find the limit of a continuous function f(x) at a point x = a, simply substitute

the value a into the function noting that % = 0 and that § = oo. The only
difficulty occurs when either of the expressions g or Z results. In this case

differentiate top and bottom and try again. Continue differentiating until the top
and bottom limits are no longer both zero or both infinity. If the undetermined

form 0 X oo occurs then it can always be rewritten as 8 or 2.

4.8 Exercises

4.1 Sum the even numbers between 1000 and 2000 inclusive.

42 If you invest £1000 on the first day of each year, and interest is paid at 5% on
your balance at the end of each year, how much money do you have after 25
years?

43 How does the convergence of the series

o

(n—r)!
Z n!

n=r

depend on the integer r?
44 Show that for testing the convergence of the series

xty+x+y 4+ 4+

where 0 < x < y < 1, the D’Alembert ratio test fails but the Cauchy root test is
successful.

4.5 Find the sum Sy of the first N terms of the following series, and hence determine
whether the series are convergent, divergent or oscillatory:

* x n Iy
Zl <n+ 1> (b) 2(72)”’ Z -

n=1 n=0 n=1

4.6 By grouping and rearranging terms of the absolutely convergent series

0

s=3

show that
1 35
SDIEEES
odd
4.7 Use the difference method to sum the series
Noon—1
— 2n%(n— 1)
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4.8 EXERCISES

4.8

49

4.10

411

4.12

4.13

4.14

The N + 1 complex numbers w,, are given by w, = exp(2nim/N), for m =
0,1,2,... ,N

(a) Evaluate the following:

N N N
(W) Y on (i) D, (i) Y ux"

m=0 m=0 m=0

(b) Use these results to evaluate:
N
. 21tm 4nm 2nm
i cos( —— ) —cos | — ||, (i) 2™ si
03 o () —eor ()] 0 S man (357),

sin 3 (n + 1)o .
cos0 +cos(0 + o) + - - - 4 cos(0 + na) = ,7 cos(0 + zna).
s

Prove that

50

Determine whether the following series converge (0 and p are positive real
numbers):

=, 2sinnd ) 1
(@) ;n(n-i-l)’ ®) Z;’ © Z2n‘/2’

n=1 n=1

“ 1y + 1) a
@ Z nlnn > @ Z_'

n=2 n=1

Find the real values of x for which the following series are convergent:

0 ©

(a) ;%, (b) Z(sinx)”, (c) an,

n=1 n=1

d) Ze (e) Y (Inny.

n=1 n=2
Determine whether the following series are convergent:
n'/ = n? (Inn)" “ "
(@) Z n+1)1/2’ Zlﬁ’ Z prE ) Zlﬁ
n= = n=

Determine whether the following series are absolutely convergent, convergent or
oscillatory:

x —1)(2 1 x —1)"x|"
Z( - (b) Z( )(n”+ ), © Z( ,)HM ’
n=1 n=1 n=0

)n x n n

@ Z:nz-i-3n+2 Z nl/2

n=1

Obtain the positive values of x for which the following series converges:

o0 2
X" 2en

2

n=1
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4.15

4.16

4.17

4.18

4.19

Prove that
@© r —1y"
Zln {" +(—1) }
n=2 n

is absolutely convergent for r = 2, but only conditionally convergent for r = 1.

An extension to the proof of the integral test (subsection 4.3.2) shows that, if f(x)
is positive, continuous and monotonically decreasing, for x > 1, and the series
f(1)+ f(2) + - - - is convergent, then its sum does not exceed f(1) + L, where L

is the integral
-
/ f(x)dx.
J1

Use this result to show that the sum ((p) of the Riemann zeta series Y n~?, with
p > 1, is not greater than p/(p — 1).

Demonstrate that rearranging the order of its terms can make a condition-
ally convergent series converge to a different limit by considering the series
S (=1)"*n~! = In2 = 0.693. Rearrange the series as

1 1 1 1 1 1 1 1 1 1
S=its—atsti—atsta—stnt

and group each set of three successive terms. Show that the series can then be
written

i: 8m—3
powt 2m(4m — 3)(4m — 1)’

which is convergent (by comparison with > n~2) and contains only positive
terms. Evaluate the first of these and hence deduce that S is not equal to In2.

Illustrate result (iv) of section 4.4, concerning Cauchy products, by considering
the double summation

o0 n 1
S=2 0w

n=1 r=1

By examining the points in the nr-plane over which the double summation is to
be carried out, show that S can be written as

S = S
22 T
Deduce that § < 3.
A Fabry—Pérot interferometer consists of two parallel heavily silvered glass plates;
light enters normally to the plates, and undergoes repeated reflections between

them, with a small transmitted fraction emerging at each reflection. Find the
intensity of the emerging wave, |B|?, where

oo}
B=A(1—r) Z r”e’""’,
n=0
with r and ¢ real.
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4.20

421

422

4.23

424

4.25

4.26

427

4.28

Identify the series
* n+l x2n

(2n—1 "’

n=1

and then, by integration and differentiation, deduce the values S of the following
series:

n+l n2

®© (_1) n+l
(”;W’ )Zanv

2n

- "“nn H'(n+1)
Z PG “”ZT~

n=0
Starting from the Maclaurin series for cos x, show that

5 2x*

(cosx)2=1+x2 +T+

Deduce the first three terms in the Maclaurin series for tan x.
Find the Maclaurin series for:

(a) 1n<1+x), b) (244", (o) sinx

1—x
Writing the nth derivative of f(x) = sinh™' x as

P,(x)
(n) _ n
) = 1+ x2)nfl/2’
where P,(x) is a polynomial (of order n — 1), show that the P,(x) satisfy the
recurrence relation

Pri(x) = (14 x)P}(x) — (2n — D)xP,(x).

Hence generate the coefficients necessary to express sinh ™! x as a Maclaurin series
up to terms in x°.

Find the first three non-zero terms in the Maclaurin series for the following
functions:

(a) (x> +9)7"V2,  (b) In[(2 + x)], (c) exp(sin x),
(d) In(cos x), (e) exp[—(x —a)?], (f) tan"'x.

By using the logarithmic series, prove that if a and b are positive and nearly
equal then
a 2a—b)
In b~ a+b
Show that the error in this approximation is about 2(a — b)?/[3(a + b)’].
Determine whether the following functions f(x) are (i) continuous, and (ii)
differentiable at x = 0:

(a) f(x) = exp(—Ix]);
(b) f(x) = (1 —cosx)/x% for x £ 0, f(0) = 1;
) f(x) = xsin(1/x) for x # 0, f(0) = N
(d) f(x) = [4 — x?], where [y] denotes the integer part of y.

Find the limit as x — 0 of [\/1 + x"— /1 — x™]/x", in which m and n are positive
integers.
Evaluate the following limits:
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4.29

4.30

4.31

4.32

4.33

434

sin 3x . tanx —tanhx
- s (b) lim ——
x—0 sinh x x—0 sinhx — x
tanx — x cosecx  sinhx
¢) lim ———, (d) lim — .
()x—»ocosxfl ( )x—»()( x3 X3 )

Find the limits of the following functions:

X Hx2—5x—-2
2x3 —Tx*+4x +4°
sin x — x cosh x

asx —> 0, x > ooand x — 2;

(a)

®) sinhx —x ~ as x = 0;

o7/2 )

@)/ <EEZTE!>@, as x - 0.
Ry y

Use Taylor expansions to three terms to find approximations to (a) *i/17, and

(b) 34/26.

Using a first-order Taylor expansion about x = xp, show that a better approxi-

mation than X, to the solution of the equation

f(x) =sinx +tanx =2
is given by x = xo + 0, where
_ 2
cosxg + sec? xg
(a) Use this procedure twice to find the solution of f(x) = 2 to six significant
figures, given that it is close to x = 0.9.

(b) Use the result in (a) to deduce, to the same degree of accuracy, one solution
of the quartic equation

vi—4y + 4y +4y—4=0.

lim ! cosec x 1_x
x—0 X3 . X 6 ’

In quantum theory, a system of oscillators, each of fundamental frequency v and
interacting at temperature T, has an average energy E given by

= > nhve™
E==—"<——
D™

where x = hv/kT, h and k being the Planck and Boltzmann constants, respec-
tively. Prove that both series converge, evaluate their sums, and show that at high
temperatures E ~ kT, whilst at low temperatures E ~ hv exp(—hv/kT).
In a very simple model of a crystal, point-like atomic ions are regularly spaced
along an infinite one-dimensional row with spacing R. Alternate ions carry equal
and opposite charges +e. The potential energy of the ith ion in the electric field
due to another ion, the jth, is

Evaluate

qi4;
47'[6()",-,‘ ’
where ¢;, q; are the charges on the ions and ry; is the distance between them.

Write down a series giving the total contribution V; of the ith ion to the overall
potential energy. Show that the series converges, and, if V; is written as

oe?

Vim o,
4regR
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4.9 HINTS AND ANSWERS

4.35

4.36

4.1

4.5

4.7

49

411

4.13

find a closed-form expression for o, the Madelung constant for this (unrealistic)
lattice.

One of the factors contributing to the high relative permittivity of water to static
electric fields is the permanent electric dipole moment, p, of the water molecule.
In an external field E the dipoles tend to line up with the field, but they do not
do so completely because of thermal agitation corresponding to the temperature,
T, of the water. A classical (non-quantum) calculation using the Boltzmann
distribution shows that the average polarisability per molecule, o, is given by

)4 —1
o= E(cothx x7),

where x = pE/(kT) and k is the Boltzmann constant.

At ordinary temperatures, even with high field strengths (10* Vm™" or more),
x < 1. By making suitable series expansions of the hyperbolic functions involved,
show that o = p?/(3kT) to an accuracy of about one part in 15x72.
In quantum theory, a certain method (the Born approximation) gives the (so-
called) amplitude f(0) for the scattering of a particle of mass m through an angle
0 by a uniform potential well of depth V; and radius b (i.e. the potential energy
of the particle is —V; within a sphere of radius b and zero elsewhere) as

szO
10) = 553

Here A is the Planck constant divided by 27, the energy of the particle is i2k?/(2m)
and K is 2ksin(0/2).
Use I'Hopital’s rule to evaluate the amplitude at low energies, i.e. when k and
hence K tend to zero, and so determine the low-energy total cross-section.
[Note: the differential cross-section is given by |f(0)> and the total cross-
section by the integral of this over all solid angles, i.e. 27 foﬂ 1£(0)*sin 0 d0.]

1

(sinKb — KbcosKb).

4.9 Hints and answers
Write as 2(3 1% n — S n) = 751 500.

Divergent for”r < 1; convergent for r > 2.

(a) In(N + 1), divergent; (b) _%[1 —(—2)"], oscillates infinitely; (c) Add _%SN to the
Sy series; &[1 —(=3)™] + 3N(—3)~V"!, convergent to .

Write the nth term as the difference between two consecutive values of a partial-
fraction function of n. The sum equals 5(1 — N~2).

Sum the geometric series with rth term exp[i(6 + ra)]. Its real part is

{cos 0 — cos [(n + 1)a + 0] — cos(0 — o) 4 cos(0 + n)} /4 sin*(ct/2),

which can be reduced to the given answer.
(a) =1 < x < 1; (b) all x except x = 2n+ 1)n/2; (c) x < —1; (d) x < 0; (e)
always divergent. Clearly divergent for x > —1. For —X = x < —1, consider

© My 1
> X M

k=1 n=Mj_y+1

where In My = k and note that My, — M,_; = e '(e — 1)M; hence show that the
series diverges.

(a) Absolutely convergent, compare with exercise 4.10(b). (b) Oscillates finitely.
(c) Absolutely convergent for all x. (d) Absolutely convergent; use partial frac-
tions. (e) Oscillates infinitely.
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4.15

4.17
421
4.23
4.25
4.27

4.29
4.31

4.33

4.35

Divide the series into two series, n odd and n even. For r = 2 both are absolutely
convergent, by comparison with > n~2. For r = 1 neither series is convergent,
by comparison with Y~ n~!'. However, the sum of the two is convergent, by the
alternating sign test or by showing that the terms cancel in pairs.

The first term has value 0.833 and all other terms are positive.

|A]X(1 —r)?/(1 4 r* — 2r cos ).

Use the binomial expansion and collect terms up to x*. Integrate both sides of
the displayed equation. tanx = x + x3/3 +2x3/15+ - - -.

For example, Ps(x) = 24x* — 72x2 4+ 9. sinh ' x = x — x3/6 4+ 3x5/40 — - - ..
Set a =D + 0 and b = D — § and use the expansion for In(1 + /D).

The limit is O for m > n, 1 for m = n, and oo for m < n.

(a) =1, 1, 00 (b) —4; (c) =1 42/

(a) First approximation 0.886452; second approximation 0.886287. (b) Set y
sinx and re-express f(x) = 2 as a polynomial equation. y = sin(0.886287)
0.774730.

If S(x) = >_»_,e™™ evaluate S(x) and consider dS(x)/dx.

E = hv[exp(hv/kT)—1]7".

. o.px (1 X
h ool (S AT
The series expansion is (3 S + >
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5

Partial differentiation

In chapter 2, we discussed functions f of only one variable x, which were usually
written f(x). Certain constants and parameters may also have appeared in the
definition of f, e.g. f(x) = ax+2 contains the constant 2 and the parameter a, but
only x was considered as a variable and only the derivatives f")(x) = d"f/dx"
were defined.

However, we may equally well consider functions that depend on more than one
variable, e.g. the function f(x,y) = x> 4+ 3xy, which depends on the two variables
x and y. For any pair of values x, y, the function f(x, y) has a well-defined value,
e.g. f(2,3) = 22. This notion can clearly be extended to functions dependent on
more than two variables. For the n-variable case, we write f(xy,x2,...,x,) for
a function that depends on the variables xy,x2,...,x,. When n = 2, x; and x;
correspond to the variables x and y used above.

Functions of one variable, like f(x), can be represented by a graph on a
plane sheet of paper, and it is apparent that functions of two variables can,
with little effort, be represented by a surface in three-dimensional space. Thus,
we may also picture f(x,y) as describing the variation of height with position
in a mountainous landscape. Functions of many variables, however, are usually
very difficult to visualise and so the preliminary discussion in this chapter will
concentrate on functions of just two variables.

5.1 Definition of the partial derivative

It is clear that a function f(x,y) of two variables will have a gradient in all
directions in the xy-plane. A general expression for this rate of change can be
found and will be discussed in the next section. However, we first consider the
simpler case of finding the rate of change of f(x,y) in the positive x- and y-
directions. These rates of change are called the partial derivatives with respect
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PARTIAL DIFFERENTIATION

to x and y respectively, and they are extremely important in a wide range of
physical applications.

For a function of two variables f(x, y) we may define the derivative with respect
to x, for example, by saying that it is that for a one-variable function when y is
held fixed and treated as a constant. To signify that a derivative is with respect
to x, but at the same time to recognize that a derivative with respect to y also
exists, the former is denoted by df/dx and is the partial derivative of f(x,y) with
respect to x. Similarly, the partial derivative of f with respect to y is denoted by
of /dy.

To define formally the partial derivative of f(x, y) with respect to x, we have

of _ o Sk ANy~ f(x)
0X  Ax—0 Ax ’

(5.1)

provided that the limit exists. This is much the same as for the derivative of a
one-variable function. The other partial derivative of f(x,y) is similarly defined
as a limit (provided it exists):

of _ . fxy+Ay)—f(xy)

i S TR 2

It is common practice in connection with partial derivatives of functions
involving more than one variable to indicate those variables that are held constant
by writing them as subscripts to the derivative symbol. Thus, the partial derivatives
defined in (5.1) and (5.2) would be written respectively as

of of
(a)) and (a)x

In this form, the subscript shows explicitly which variable is to be kept constant.
A more compact notation for these partial derivatives is f, and f,. However, it is
extremely important when using partial derivatives to remember which variables
are being held constant and it is wise to write out the partial derivative in explicit
form if there is any possibility of confusion.

The extension of the definitions (5.1), (5.2) to the general n-variable case is
straightforward and can be written formally as

0f ety Xz, Xn) o o X2 X Ay X) = f(X1, X0, X X)]
22 = lim ,
('}x,- Ax;i—0 Axi
provided that the limit exists.
Just as for one-variable functions, second (and higher) partial derivatives may
be defined in a similar way. For a two-variable function f(x,y) they are

2 2
a (g)_ﬂ=fxxa i(al>=af:fy)7’

ox \dx ) ox? dy \ 0y 0y?
S(UN_PE o (U,
ox \dy) oxay TV dy \ox )  oyox T
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5.2 THE TOTAL DIFFERENTIAL AND TOTAL DERIVATIVE

Only three of the second derivatives are independent since the relation

2f o
O0xdy ~ dyéx’

is always obeyed, provided that the second partial derivatives are continuous
at the point in question. This relation often proves useful as a labour-saving
device when evaluating second partial derivatives. It can also be shown that for
a function of n variables, f(xy, x2,...,X,), under the same conditions,

82 f o f

0xi0x;  0xj0x;

» Find the first and second partial derivatives of the function
f(xy)=2xy* +y.

The first partial derivatives are

of 0
T ooy, L _acyrap
0x dy
and the second partial derivatives are
*f » O 3 >f ) ef 2
— = 12xy° —5 =4x"+6 =123 — =12
0x2 XV 0y? X"+ 6y, 0xdy Xy, 0yox *Y

the last two being equal, as expected. «

5.2 The total differential and total derivative

Having defined the (first) partial derivatives of a function f(x,y), which give the
rate of change of f along the positive x- and y-axes, we consider next the rate of
change of f(x,y) in an arbitrary direction. Suppose that we make simultaneous
small changes Ax in x and Ay in y and that, as a result, f changes to f + Af.
Then we must have

Af = f(x +Ax,y + Ay) — f(x,)
=f(x+Ax,y +Ay) — f(x,y + Ay) + f(x,y + Ay) — f(x,y)

f(x+Ax,y+Ay)—f(x,y+Ay)} Ax+ {f(x,erAy)—f(x,y) A
Ax Ay v

(5.3)

In the last line we note that the quantities in brackets are very similar to those
involved in the definitions of partial derivatives (5.1), (5.2). For them to be strictly
equal to the partial derivatives, Ax and Ay would need to be infinitesimally small.
But even for finite (but not too large) Ax and Ay the approximate formula
0 0
Af ~ f(x,») fx ) )

0x Jy ’

Ax + (5.4)
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can be obtained. It will be noticed that the first bracket in (5.3) actually approxi-
mates to df(x,y + Ay)/0x but that this has been replaced by df(x,y)/dx in (5.4).
This approximation clearly has the same degree of validity as that which replaces
the bracket by the partial derivative.

How valid an approximation (5.4) is to (5.3) depends not only on how small
Ax and Ay are but also on the magnitudes of higher partial derivatives; this is
discussed further in section 5.7 in the context of Taylor series for functions of
more than one variable. Nevertheless, letting the small changes Ax and Ay in
(5.4) become infinitesimal, we can define the total differential df of the function
f(x,y), without any approximation, as

W of
1 dy. 5.5
df = + oY (5.5)
Equation (5.5) can be extended to the case of a function of n variables,
f(xlyx2>'“9xn);

5 0
df = f X1+ aidxz + - 6){

dx,. (5.6)

» Find the total differential of the function f(x,y) = yexp(x + y). |

Evaluating the first partial derivatives, we find

0 0
#E:yﬁMX+yL %L:mMX+y%+yﬁMX+yl
0x ay

Applying (5.5), we then find that the total differential is given by
df = [yexp(x + y)ldx + [(1 + y) exp(x + y)ldy. «

In some situations, despite the fact that several variables x;, i = 1,2,...,n,
appear to be involved, effectively only one of them is. This occurs if there are
subsidiary relationships constraining all the x; to have values dependent on the
value of one of them, say x;. These relationships may be represented by equations
that are typically of the form

xi=xi(x1), i=23,...,n (5.7)

In principle f can then be expressed as a function of x; alone by substituting
from (5.7) for x5, x3,...,X,, and then the total derivative (or simply the derivative)
of f with respect to x; is obtained by ordinary differentiation.

Alternatively, (5.6) can be used to give

dif of  (of \dx of \ dx,
dx; ~ 0x + ((’)xz dx, Tt 0x, ) dxi (58)

It should be noted that the LHS of this equation is the total derivative df /dx;,
whilst the partial derivative df/0x; forms only a part of the RHS. In evaluating
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5.3 EXACT AND INEXACT DIFFERENTIALS

this partial derivative account must be taken only of explicit appearances of x; in
the function f, and no allowance must be made for the knowledge that changing
X1 necessarily changes x;, x3,...,X,. The contribution from these latter changes is
precisely that of the remaining terms on the RHS of (5.8). Naturally, what has
been shown using x; in the above argument applies equally well to any other of
the x;, with the appropriate consequent changes.

» Find the total derivative of f(x,y) = x* + 3xy with respect to x, given that y = sin"" x.

We can see immediately that

of aof dy 1
2 23 -
0x *+3y, dy 3%, dx  (1—x*)1?
and so, using (5.8) with x; = x and x, =y,
df 1
I —2>c-i—3y-i—3x7(1 —
— x4 3sin x4

(1—x)2

Obviously the same expression would have resulted if we had substituted for y from the
start, but the above method often produces results with reduced calculation, particularly
in more complicated examples. <

5.3 Exact and inexact differentials

In the last section we discussed how to find the total differential of a function, i.e.
its infinitesimal change in an arbitrary direction, in terms of its gradients 0f /0x
and 0f/0y in the x- and y- directions (see (5.5)). Sometimes, however, we wish
to reverse the process and find the function f that differentiates to give a known
differential. Usually, finding such functions relies on inspection and experience.

As an example, it is easy to see that the function whose differential is df =
xdy + ydx is simply f(x,y) = xy + ¢, where ¢ is a constant. Differentials such as
this, which integrate directly, are called exact differentials, whereas those that do
not are inexact differentials. For example, xdy + 3y dx is not the straightforward
differential of any function (see below). Inexact differentials can be made exact,
however, by multiplying through by a suitable function called an integrating
factor. This is discussed further in subsection 14.2.3.

| » Show that the differential x dy + 3y dx is inexact. |

On the one hand, if we integrate with respect to x we conclude that f(x,y) = 3xy + g(»),
where g(y) is any function of y. On the other hand, if we integrate with respect to y we
conclude that f(x,y) = xy + h(x) where h(x) is any function of x. These conclusions are
inconsistent for any and every choice of g(y) and h(x), and therefore the differential is
nexact. <«

It is naturally of interest to investigate which properties of a differential make
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it exact. Consider the general differential containing two variables,
df = A(x,y)dx + B(x,y) dy.
We see that

0 0
?f = A(x,y), ?f = B(x,y)
oxX gy

and, using the property fy, = f,x, we therefore require

0A 0B
== (59)
ay 0x

This is in fact both a necessary and a sufficient condition for the differential to
be exact.

|>Using (5.9) show that xdy + 3y dx is inexact.

In the above notation, A(x,y) = 3y and B(x,y) = x and so

0A
— =3, °B =1
ay 0x

As these are not equal it follows that the differential is inexact. «

Determining whether a differential containing many variable xg,x,,...,X, is
exact is a simple extension of the above. A differential containing many variables
can be written in general as

df = gilxr, X2, Xy) dx;

i=1
and will be exact if

Ogi _ 08;

: for all pairs i, j. (5.10)

A

3
ox;  0x;

There will be %n(n — 1) such relationships to be satisfied.

» Show that
(y+z)dx+xdy+xdz

is an exact differential.

In this case, gi(x,y,z) = y + z, g(x,¥,z) = X, g3(x,y,z) = x and hence dg;/dy =1 =
0g2/0x, 0g3/0x = 1 = 0g,/0z, 0g2/dz = 0 = 0g3/0y; therefore, from (5.10), the differential
is exact. As mentioned above, it is sometimes possible to show that a differential is exact
simply by finding by inspection the function from which it originates. In this example, it
can be seen easily that f(x,y,z) =x(y+z)+c¢ «
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5.4 Useful theorems of partial differentiation

So far our discussion has centred on a function f(x, y) dependent on two variables,
x and y. Equally, however, we could have expressed x as a function of f and y,
or y as a function of f and x. To emphasise the point that all the variables are
of equal standing, we now replace f by z. This does not imply that x, y and z
are coordinate positions (though they might be). Since x is a function of y and z,
it follows that

0 0
dx = (ﬂ) dy + (ﬂ) dz (5.11)
0y ). iz ),
and similarly, since y = y(x, z),
3 5
dy = (Z—y) dx + (i—y> dz. (5.12)
ox - oz x

We may now substitute (5.12) into (5.11) to obtain

dx=(%) (a_y) dx + (5—") (61) +(a—") }dz. (5.13)
ayzoxz ay).\oz ), az ),

Now if we hold z constant, so that dz = 0, we obtain the reciprocity relation

oy _ (o)
ayz_ ox),”’

which holds provided both partial derivatives exist and neither is equal to zero.
Note, further, that this relationship only holds when the variable being kept
constant, in this case z, is the same on both sides of the equation.

Alternatively we can put dx = 0 in (5.13). Then the contents of the square
brackets also equal zero, and we obtain the cyclic relation

NN
azxﬁxvayz_’

which holds unless any of the derivatives vanish. In deriving this result we have
used the reciprocity relation to replace ((7)(/('/’2);1 by (0z/0x),.

5.5 The chain rule

So far we have discussed the differentiation of a function f(x,y) with respect to
its variables x and y. We now consider the case where x and y are themselves
functions of another variable, say u. If we wish to find the derivative df/du,
we could simply substitute in f(x,y) the expressions for x(u) and y(u) and then
differentiate the resulting function of u. Such substitution will quickly give the
desired answer in simple cases, but in more complicated examples it is easier to
make use of the total differentials described in the previous section.
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From equation (5.5) the total differential of f(x,y) is given by

ﬁf of

d
+6

df =
but we now note that by using the formal device of dividing through by du this
immediately implies

4 _ofd, o
du  Oxdu = dydu’

(5.14)

which is called the chain rule for partial differentiation. This expression provides
a direct method for calculating the total derivative of f with respect to u and is
particularly useful when an equation is expressed in a parametric form.

»Given that x(u) = 1 + au and y(u) = bu?, find the rate of change of f(x,y) = xe™ with
respect to u.

As discussed above, this problem could be addressed by substituting for x and y to obtain
f as a function only of u and then differentiating with respect to u. However, using (5.14)
directly we obtain

ﬁ = (e7)a+ (—xe?)3bi,
du

which on substituting for x and y gives

4 _ e (a — 3b® — 3bau’). <
du

Equation (5.14) is an example of the chain rule for a function of two variables
each of which depends on a single variable. The chain rule may be extended to
functions of many variables, each of which is itself a function of a variable u, i.e.

f(x1,%2,X3,...,X,), with x; = x;(u). In this case the chain rule gives
of dx; of dxy of dx of dx,

— = — 4. . 5.15

Z 0x; du T 0xy du + 0xy du Tt 0x, du ( )

5.6 Change of variables

It is sometimes necessary or desirable to make a change of variables during the
course of an analysis, and consequently to have to change an equation expressed
in one set of variables into an equation using another set. The same situation arises
if a function f depends on one set of variables x;, so that f = f(x,x2,...,x,) but
the x; are themselves functions of a further set of variables u; and given by the
equations

Xi = Xi(u1, Uz, ..., Un)- (5.16)
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Figure 5.1 The relationship between Cartesian and plane polar coordinates.

For each different value of i, x; will be a different function of the u;. In this case
the chain rule (5.15) becomes

Z U& - jorm (5.17)

LLl] 0x; ouj

and is said to express a change of variables. In general the number of variables
in each set need not be equal, i.e. m need not equal n, but if both the x; and the
u; are sets of independent variables then m = n.

» Plane polar coordinates, p and ¢, and Cartesian coordinates, x and y, are related by the
expressions

x=pcos¢, y=psing,

as can be seen from figure 5.1. An arbitrary function f(x,y) can be re-expressed as a
function g(p, ). Transform the expression

’f &

oxr  0)?

into one in p and ¢.

We first note that p?> = x> + 2, ¢ = tan~'(y/x). We can now write down the four partial
derivatives

ap x _ d¢p —(y/x?) _ sing
e e N P S
ap y . dp 1/x __cos¢
T T M S 17 e
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Thus, from (5.17), we may write

0 0 i 0 0 0 0
9 _. _751nd>ﬁ’ ;_Sln¢c+cos¢;.
0x op p 09 oy p 0
Now it is only a matter of writing
Pr_o (oY _a (),
0x2 ox \0x/)  ox \ox
=<cos¢i—sm¢i>< (/)L"_smd)[))
op p 0¢ p 0¢
0 i 0 0 0
= <cos¢%fsm¢,’—> <cos _gfﬂ_}g
op p 09 op p 0
, , 0% 2cos¢sing dg  2cospsing 02
=CosTp3 2 - 00
ap p 0 p d¢pdp

N sin? ¢ dg  sin® ¢ d%g
p dp p* 0d?

and a similar expression for 02f/dy?,

62

f (. 0  cos¢ 0 ., 0 cos¢p 0
o T\ Mt e )M T )8
_ g Zcosd)sin¢ d0g  2cos¢sing 0°g
B I 7 A R T
cos? ¢ dg | cos’p i’g
p dp  p> 0P

+

When these two expressions are added together the change of variables is complete and
we obtain
O B Py i 1%
ox2 ' 0y2 0p>  pop | p?ogr

5.7 Taylor’s theorem for many-variable functions

We have already introduced Taylor’s theorem for a function f(x) of one variable,
in section 4.6. In an analogous way, the Taylor expansion of a function f(x, y) of
two variables is given by

fo + 6fA

f(XsY) f(XOsYO)‘l‘ y

2 2 2
1 M 6foAy+2y];(Ay)2 +o,  (518)

53(A x)? 42

where Ax = x — xo and Ay = y — yo, and all the derivatives are to be evaluated
at (xo, yo)-
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» Find the Taylor expansion, up to quadratic terms in x—2 and y—3, of f(x,y) = yexpxy
about the point x =2, y = 3.

We first evaluate the required partial derivatives of the function, i.e.

g — yz exp xy, g = eXp xy + Xy €Xp xy,
0x dy

of of
8x); = ydexpxy, (’*T/J; = 2xexpxy + x’yexp xy,

f = 2yexpxy + xy2 expx,
oxdy Yy eXp xy + Xy~ exp xy.

Using (5.18), the Taylor expansion of a two-variable function, we find
flx,y) = 66{3 +9(x—2)+7(y —3)

+ ()7 [27(x — 2)7 + 48(x — 2)(y — 3) + 16(y — 3)’] } <

It will be noticed that the terms in (5.18) containing first derivatives can be
written as
of f 0
Lo Sy = (axg+av L) fix
where both sides of this relation should be evaluated at the point (xo, yo). Similarly
the terms in (5.18) containing second derivatives can be written as

’f ’f
0xdy

L[

2
21 | 3x2 AX)"+2

AxAy+ (Ay)} (A a—+Ay(3 ) f(x,y),

(5.19)

where it is understood that the partial derivatives resulting from squaring the
expression in parentheses act only on f(x,y) and its derivatives, and not on Ax
or Ay; again both sides of (5.19) should be evaluated at (xo, yo). It can be shown
that the higher-order terms of the Taylor expansion of f(x,y) can be written in
an analogous way, and that we may write the full Taylor series as

0 a A n
fx) =3 o | (A +4v5 ) fes)

n=0 X0.)0

where, as indicated, all the terms on the RHS are to be evaluated at (xo, yo).
The most general form of Taylor’s theorem, for a function f(xy, x3,...,x,) of n
variables, is a simple extension of the above. Although it is not necessary to do
so, we may think of the x; as coordinates in n-dimensional space and write the
function as f(x), where x is a vector from the origin to (xi, x2,...,X,). Taylor’s
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theorem then becomes

f(x) xo+z o A +2,Zza

(5.20)

where Ax; = x; — x;, and the partial derivatives are evaluated at (xi,, X2, - ., Xn,)-
For completeness, we note that in this case the full Taylor series can be written
in the form

9=l

n=0

VI Ly

2l

where V is the vector differential operator del, to be discussed in chapter 10.

5.8 Stationary values of many-variable functions

The idea of the stationary points of a function of just one variable has already
been discussed in subsection 2.1.8. We recall that the function f(x) has a stationary
point at x = xq if its gradient df /dx is zero at that point. A function may have
any number of stationary points, and their nature, i.e. whether they are maxima,
minima or stationary points of inflection, is determined by the value of the second
derivative at the point. A stationary point is

(i) a minimum if d2f /dx? > 0;
(i) a maximum if d*f/dx* < 0;
(iii) a stationary point of inflection if d?f/dx*> = 0 and changes sign through
the point.

We now consider the stationary points of functions of more than one variable;
we will see that partial differential analysis is ideally suited to the determination
of the position and nature of such points. It is helpful to consider first the case
of a function of just two variables but, even in this case, the general situation
is more complex than that for a function of one variable, as can be seen from
figure 5.2.

This figure shows part of a three-dimensional model of a function f(x,y). At
positions P and B there are a peak and a bowl respectively or, more mathemati-
cally, a local maximum and a local minimum. At position S the gradient in any
direction is zero but the situation is complicated, since a section parallel to the
plane x = 0 would show a maximum, but one parallel to the plane y = 0 would
show a minimum. A point such as S is known as a saddle point. The orientation
of the ‘saddle’ in the xy-plane is irrelevant; it is as shown in the figure solely for
ease of discussion. For any saddle point the function increases in some directions
away from the point but decreases in other directions.
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5.8 STATIONARY VALUES OF MANY-VARIABLE FUNCTIONS

Figure 5.2 Stationary points of a function of two variables. A minimum
occurs at B, a maximum at P and a saddle point at S.

For functions of two variables, such as the one shown, it should be clear that a
necessary condition for a stationary point (maximum, minimum or saddle point)
to occur is that

aq_p

E and

=0. (5.21)

Q)|QJ
=~

The vanishing of the partial derivatives in directions parallel to the axes is enough
to ensure that the partial derivative in any arbitrary direction is also zero. The
latter can be considered as the superposition of two contributions, one along
each axis; since both contributions are zero, so is the partial derivative in the
arbitrary direction. This may be made more precise by considering the total
differential

U ey Yy

Using (5.21) we see that although the infinitesimal changes dx and dy can be
chosen independently the change in the value of the infinitesimal function df is
always zero at a stationary point.

We now turn our attention to determining the nature of a stationary point of
a function of two variables, i.e. whether it is a maximum, a minimum or a saddle
point. By analogy with the one-variable case we see that 0>f/dx> and 9%f/0y>
must both be positive for a minimum and both be negative for a maximum.
However these are not sufficient conditions since they could also be obeyed at
complicated saddle points. What is important for a minimum (or maximum) is
that the second partial derivative must be positive (or negative) in all directions,
not just in the x- and y- directions.
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To establish just what constitutes sufficient conditions we first note that, since
f is a function of two variables and df /0x = df /0y = 0, a Taylor expansion of
the type (5.18) about the stationary point yields

F69) = F(x0.70) & 5+ [(AxVfrx + 2AxAYS o + (Ay)f 1]

1
2!
where Ax = x — xp and Ay = y — yo and where the partial derivatives have been
written in more compact notation. Rearranging the contents of the bracket as
the weighted sum of two squares, we find

WAV 2
F03) = fx0.30) ~ 5 {f (x4 22) iy (fyy - f})} -
XX XX (5.22)

For a minimum, we require (5.22) to be positive for all Ax and Ay, and hence
fxe >0 and f,, — (fﬁy/fxx) > 0. Given the first constraint, the second can be
written ficfy, > fgy. Similarly for a maximum we require (5.22) to be negative,
and hence f, <0 and fyf), > f ﬁy. For minima and maxima, symmetry requires
that f, obeys the same criteria as f... When (5.22) is negative (or zero) for some
values of Ax and Ay but positive (or zero) for others, we have a saddle point. In
this case fy.fyy < ffy. In summary, all stationary points have fy = f, = 0 and

they may be classified further as

(i) minima if both fy and f, are positive and f2, < frcfyy,
(ii) maxima if both f., and f}, are negative and ff.y < fxcfyps

(iii) saddle points if fy, and f,, have opposite signs or fﬁy > facfyy-

Note, however, that if fﬁy = fufyy then f(x,y) — f(Xo,y0) can be written in one
of the four forms

1 2
iE <Ax|fxx|1/2 + Ay|fyy‘l/2> ’

For some choice of the ratio Ay/Ax this expression has zero value, showing
that, for a displacement from the stationary point in this particular direction,
f(xo + Ax,yo + Ay) does not differ from f(xo,yo) to second order in Ax and
Ay; in such situations further investigation is required. In particular, if f, f,,
and f,, are all zero then the Taylor expansion has to be taken to a higher
order. As examples, such extended investigations would show that the function
f(x,y) = x* + y* has a minimum at the origin but that g(x,y) = x* + 3% has a
saddle point there.
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» Show that the function f(x,y) = x> exp(—x?—y?) has a maximum at the point (1/3/2,0),

a minimum at (—+/3/2,0) and a stationary point at the origin whose nature cannot be
determined by the above procedures.

Setting the first two partial derivatives to zero to locate the stationary points, we find

of

Pl (3x* — 2xM exp(—x? — y?) =0, (5.23)
% = —2yx® exp(—x* — y?) = 0. (5.24)

For (5.24) to be satisfied we require x = 0 or y = 0 and for (5.23) to be satisfied we require
x =0 or x = +4/3/2. Hence the stationary points are at (0,0), (\/3/2, 0) and (—+/3/2,0).
We now find the second partial derivatives:

Frx = (4x° — 14x° + 6x) exp(—x? — ?),

fw = X3(4y2 =2) CXP(*XZ - yz),

fry = 2x%p(2x% — 3) exp(—x* — ).

We then substitute the pairs of values of x and y for each stationary point and find that
at (0,0)

and at (++/3/2,0)

foe = F64/3/2 exp(=3/2),  fyy = F3v3/2 exp(=3/2), fy =0

Hence, applying criteria (i)—(iii) above, we find that (0,0) is an undetermined stationary
point, (\/3/2, 0) is a maximum and (—\/3/2, 0) is a minimum. The function is shown in
figure 5.3. <

Determining the nature of stationary points for functions of a general number
of variables is considerably more difficult and requires a knowledge of the
eigenvectors and eigenvalues of matrices. Although these are not discussed until
chapter 8, we present the analysis here for completeness. The remainder of this
section can therefore be omitted on a first reading.

For a function of n real variables, f(xi,xs,...,X,), we require that, at all
stationary points,

=0 forall x;.

In order to determine the nature of a stationary point, we must expand the
function as a Taylor series about the point. Recalling the Taylor expansion (5.20)
for a function of n variables, we see that

1 o*f
Af = f0) = fxo) 3 DD =
i e

AxiAx;. (5.25)
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maximum

Figure 5.3 The function f(x,y) = x* exp(—x? — y?).

If we define the matrix M to have elements given by

o
v 5xi8xj’

then we can rewrite (5.25) as
Af = LAX"MAXx, (5.26)

where Ax is the column vector with the Ax; as its components and AxT is its
transpose. Since M is real and symmetric it has n real eigenvalues A, and n
orthogonal eigenvectors e,, which after suitable normalisation satisfy

T
Me, = )vrery e.e = 5"53

where the Kronecker delta, written 0,5, equals unity for r = s and equals zero
otherwise. These eigenvectors form a basis set for the n-dimensional space and
we can therefore expand Ax in terms of them, obtaining

Ax = E a,ey,
r
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5.9 STATIONARY VALUES UNDER CONSTRAINTS

where the a, are coefficients dependent upon Ax. Substituting this into (5.26), we
find

Af = JAX"MAX = 1) " J,a].

Now, for the stationary point to be a minimum, we require Af = %Zr Jraz >0
for all sets of values of the a,, and therefore all the eigenvalues of M to be
greater than zero. Conversely, for a maximum we require Af = %Zr Jral <0,
and therefore all the eigenvalues of M to be less than zero. If the eigenvalues have
mixed signs, then we have a saddle point. Note that the test may fail if some or
all of the eigenvalues are equal to zero and all the non-zero ones have the same
sign.

» Derive the conditions for maxima, minima and saddle points for a function of two real
variables, using the above analysis.

For a two-variable function the matrix M is given by
fXX fV\f
M= ; i .
< f X f vy
Therefore its eigenvalues satisfy the equation

f.\‘.\‘ _/1 fxy
fxy fyy -4

Hence

(oo = My —4) — Ey =0

= fxxf}'y 7(fxx +fu))+7~2*f3} =0

= 2=(=t+fn=x \/(fxx + ) = 4 xS vy — 13),

which by rearrangement of the terms under the square root gives

2% = (fxx + fyy) + A/ (fxx' _f}‘}')z + 4f,%y-

Now, that M is real and symmetric implies that its eigenvalues are real, and so for both
eigenvalues to be positive (corresponding to a minimum), we require f,, and f,, positive
and also

Fect fr >\ U+ fin)? = 4 wcf sy — 13,
= f,\:vfyy - > 0.

Xy

A similar procedure will find the criteria for maxima and saddle points. «

5.9 Stationary values under constraints

In the previous section we looked at the problem of finding stationary values of
a function of two or more variables when all the variables may be independently
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varied. However, it is often the case in physical problems that not all the vari-
ables used to describe a situation are in fact independent, i.e. some relationship
between the variables must be satisfied. For example, if we walk through a hilly
landscape and we are constrained to walk along a path, we will never reach
the highest peak on the landscape unless the path happens to take us to it.
Nevertheless, we can still find the highest point that we have reached during our
journey.

We first discuss the case of a function of just two variables. Let us consider
finding the maximum value of the differentiable function f(x,y) subject to the
constraint g(x,y) = ¢, where ¢ is a constant. In the above analogy, f(x,y) might
represent the height of the land above sea-level in some hilly region, whilst
g(x,y) = c is the equation of the path along which we walk.

We could, of course, use the constraint g(x,y) = ¢ to substitute for x or y in
f(x,y), thereby obtaining a new function of only one variable whose stationary
points could be found using the methods discussed in subsection 2.1.8. However,
such a procedure can involve a lot of algebra and becomes very tedious for func-
tions of more than two variables. A more direct method for solving such problems
is the method of Lagrange undetermined multipliers, which we now discuss.

To maximise f we require

i, af
af = R d =0.
If dx and dy were independent, we could conclude fy = 0 = f,. However, here
they are not independent, but constrained because g is constant:
dg = %dx+%ly:0‘

Multiplying dg by an as yet unknown number /4 and adding it to df we obtain

d(f+)vg)=<%fc+ Si)d +(af+A—y>d =0,

where / is called a Lagrange undetermined multiplier. In this equation dx and dy
are to be independent and arbitrary; we must therefore choose 4 such that

o ;%8 g, (5.27)
ox 0x

aof

3 ay =0. (5.28)

These equations, together with the constraint g(x, y) = ¢, are sufficient to find the
three unknowns, i.e. 4 and the values of x and y at the stationary point.
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5.9 STATIONARY VALUES UNDER CONSTRAINTS

» The temperature of a point (x,y) on a unit circle is given by T(x,y) = 1+ xy. Find the
temperature of the two hottest points on the circle.

We need to maximise T(x,y) subject to the constraint x> + y?> = 1. Applying (5.27) and
(5.28), we obtain

y+2ix=0, (5.29)
x+2y =0. (5.30)

These results, together with the original constraint x* + y? = 1, provide three simultaneous
equations that may be solved for 4, x and y.

From (5.29) and (5.30) we find A = +1/2, which in turn implies that y = Fx. Remem-
bering that x*> 4+ y? = 1, we find that

1 1
)= 3 (=+—, =4+
yEx = oaEE s TR,
= —x = x_$i y_+i
v V2 Y V2

We have not yet determined which of these stationary points are maxima and which are
minima. In this simple case, we need only substitute the four pairs of x- and y- values into
T(x,y) = 1 4+ xy to find that the maximum temperature on the unit circle is Tp.x = 3/2 at

the points y = x = +1/,/2. <

The method of Lagrange multipliers can be used to find the stationary points of
functions of more than two variables, subject to several constraints, provided that
the number of constraints is smaller than the number of variables. For example,
if we wish to find the stationary points of f(x,y,z) subject to the constraints
g(x,y,z) = c¢; and h(x,y,z) = ¢z, where ¢; and ¢, are constants, then we proceed
as above, obtaining

0 , of oh

§(f+ﬂg+ﬂh) a—+ 6x+'u_x —0,

0 | 0 oh

O gy =L 4,8 (531)
dy dy ~dy 0y

0 . of oh

E(f‘l’ﬁg‘l‘ﬂh) _Z+ (,}—‘l',u& = 0.

We may now solve these three equations, together with the two constraints, to
give 2, i, x, y and z.

169



PARTIAL DIFFERENTIATION

» Find the stationary points of f(x,y,z) = x> +y*+ 23 subject to the following constraints:

(i) gx,y.2)=x>+y*+22=1;
(i) g(x,y,z) =x2+y2+22 =1 and h(x,y,z)=x+y+z=0.

Case (i). Since there is only one constraint in this case, we need only introduce a single
Lagrange multiplier to obtain

0 2, s
a(f—‘rig) =3x"+2Ax=0,

A

%(f +7g) =3 +20y =0, (5.32)

A

0 o _
E(f—‘r/lg) =3z"4+21z=0.

These equations are highly symmetrical and clearly have the solution x = y =z = —24/3.

Using the constraint x> 4+ y? 4+ 22 = 1 we find 2 = ++/3/2 and so stationary points occur
at

1
NGk
In solving the three equations (5.32) in this way, however, we have implicitly assumed
that x, y and z are non-zero. However, it is clear from (5.32) that any of these values can
equal zero, with the exception of the case x = y = z = 0 since this is prohibited by the
constraint x> + y? + z2 = 1. We must consider the other cases separately.
If x = 0, for example, we require

x=y=z=+%+ (5.33)

3y 4+ 24y =0,

322422z =0,
2 2 _
y 4z =1

Clearly, we require 4 # 0, otherwise these equations are inconsistent. If neither y nor
z is zero we find y = —21/3 = z and from the third equation we require y = z =
il/ﬁ. If y = 0, however, then z = +1 and, similarly, if z = 0 then y = +1. Thus the
stationary points having x = 0 are (0,0,+1), (0,+1,0) and (0, +1//2, +1/3/2). A similar
procedure can be followed for the cases y = 0 and z = 0 respectively and, in addition
to those already obtained, we find the stationary points (+1,0,0), (il/ﬁ, 0, il/ﬁ) and
(12, £1/4/2,0).

Case (ii). We now have two constraints and must therefore introduce two Lagrange
multipliers to obtain (cf. (5.31))

a
;—x(f g+ ph) = 3%+ 22x + u =0, (5.34)
Oi(f+/1g+uh)=3y2+2).y+u=0, (5.35)
ai(f g+ uh) =322+ 20z + pu=0. (5.36)
zZ

These equations are again highly symmetrical and the simplest way to proceed is to
subtract (5.35) from (5.34) to obtain

3(x =y +2MUx—y)=0
= 3(x+y)(x—y)+2Ux—y)=0. (5.37)

This equation is clearly satisfied if x = y; then, from the second constraint, x +y +z =0,
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5.9 STATIONARY VALUES UNDER CONSTRAINTS

we find z = —2x. Substituting these values into the first constraint, x> + y* + z> = 1, we
obtain

x=+—, y=+ (5.38)

e

Because of the high degree of symmetry amongst the equations (5.34)—(5.36), we may obtain
by inspection two further relations analogous to (5.37), one containing the variables y,z
and the other the variables x,z. Assuming y = z in the first relation and x = z in the
second, we find the stationary points

1 2 1
x=4—, =F=, =+ 5.39
=t Y +\/6 =t g (5:39)
and
2 1 1
=F=, =+—, =+—. 5.40
x +\/6 y NG z NG (5.40)

We note that in finding the stationary points (5.38)—(5.40) we did not need to evaluate the
Lagrange multipliers 4 and u explicitly. This is not always the case, however, and in some
problems it may be simpler to begin by finding the values of these multipliers.

Returning to (5.37) we must now consider the case where x # y; then we find

3x+y)+22=0. (5.41)

However, in obtaining the stationary points (5.39), (5.40), we did not assume x = y but
only required y = z and x = z respectively. It is clear that x # y at these stationary points,
and it can be shown that they do indeed satisfy (5.41). Similarly, several stationary points
for which x # z or y # z have already been found.

Thus we need to consider further only two cases, x =y = z, and x, y and z are all
different. The first is clearly prohibited by the constraint x + y + z = 0. For the second
case, (5.41) must be satisfied, together with the analogous equations containing y,z and
X, z respectively, i.e.

3(x+y)+2.=0,
3(y42)+21=0,
3(x+z)+21=0.

Adding these three equations together and using the constraint x+y+z =0 we find 1 = 0.
However, for 1 = 0 the equations are inconsistent for non-zero x, y and z. Therefore all
the stationary points have already been found and are given by (5.38)-(5.40). «

The method may be extended to functions of any number n of variables
subject to any smaller number m of constraints. This means that effectively there
are n — m independent variables and, as mentioned above, we could solve by
substitution and then by the methods of the previous section. However, for large
n this becomes cumbersome and the use of Lagrange undetermined multipliers is
a useful simplification.

171



PARTIAL DIFFERENTIATION

» A system contains a very large number N of particles, each of which can be in any of R
energy levels with a corresponding energy E;, i = 1,2,...,R. The number of particles in the
ith level is n; and the total energy of the system is a constant, E. Find the distribution of
particles amongst the energy levels that maximises the expression
N!
a n1!n2!~-~nR!’

subject to the constraints that both the number of particles and the total energy remain
constant, i.e.

The way in which we proceed is as follows. In order to maximise P, we must minimise
its denominator (since the numerator is fixed). Minimising the denominator is the same as
minimising the logarithm of the denominator, i.c.

f=In(nn!---ng!)y=Inm!)+1In(mn!)+---+In(ng!).
Using Stirling’s approximation, In (n!) ~ nlnn — n, we find that

f=mlnn +nmlnny+---+nglnng —(ny +ny+--- +ng)

R
= <Z n; lnni> —N.
i=1

It has been assumed here that, for the desired distribution, all the n; are large. Thus, we
now have a function f subject to two constraints, g = 0 and h = 0, and we can apply the
Lagrange method, obtaining (cf. (5.31))

of  og  oh
a8 =0
8n1 + 8n1 + H@nl ’
of . og ok
A =0,
(’)l’lz + (’)l’lz 6”2 ’
o L0 o o
anR ‘6nR ﬁnR o

Since all these equations are alike, we consider the general case

Sl oo
ony ony ony

for k =1,2,..., R. Substituting the functions f, g and h into this relation we find
Z—t + I+ A(—1) + p(—Ep) =0,
which can be rearranged to give
Inn, = uE, +41—1,
and hence

n, = Cexp pEy.
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We now have the general form for the distribution of particles amongst energy levels, but
in order to determine the two constants u, C we recall that

R
ZCexpyEk:N

k=1

and
R

> CEyexpuEy = E.
k=1

This is known as the Boltzmann distribution and is a well-known result from statistical
mechanics. <

5.10 Envelopes

As noted at the start of this chapter, many of the functions with which physicists,
chemists and engineers have to deal contain, in addition to constants and one
or more variables, quantities that are normally considered as parameters of the
system under study. Such parameters may, for example, represent the capacitance
of a capacitor, the length of a rod, or the mass of a particle — quantities that
are normally taken as fixed for any particular physical set-up. The corresponding
variables may well be time, currents, charges, positions and velocities. However,
the parameters could be varied and in this section we study the effects of doing so;
in particular we study how the form of dependence of one variable on another,
typically y = y(x), is affected when the value of a parameter is changed in a
smooth and continuous way. In effect, we are making the parameter into an
additional variable.

As a particular parameter, which we denote by o, is varied over its permitted
range, the shape of the plot of y against x will change, usually, but not always,
in a smooth and continuous way. For example, if the muzzle speed v of a shell
fired from a gun is increased through a range of values then its height—distance
trajectories will be a series of curves with a common starting point that are
essentially just magnified copies of the original; furthermore the curves do not
cross each other. However, if the muzzle speed is kept constant but 6, the angle
of elevation of the gun, is increased through a series of values, the corresponding
trajectories do not vary in a monotonic way. When 6 has been increased beyond
45° the trajectories then do cross some of the trajectories corresponding to 6 < 45°.
The trajectories for 6 > 45° all lie within a curve that touches each individual
trajectory at one point. Such a curve is called the envelope to the set of trajectory
solutions; it is to the study of such envelopes that this section is devoted.

For our general discussion of envelopes we will consider an equation of the
form f = f(x, y, ) = 0. A function of three Cartesian variables, f = f(x, y, ®),
is defined at all points in xyo-space, whereas f = f(x, y, ) = 0 is a surface in
this space. A plane of constant &, which is parallel to the xy-plane, cuts such
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fxy,0) =0 f(x,y,01+h)=0

X

Figure 54 Two neighbouring curves in the xy-plane of the family f(x,y,o) =
0 intersecting at P. For fixed oy, the point P; is the limiting position of P as
h — 0. As o is varied, P; delineates the envelope of the family (broken line).

a surface in a curve. Thus different values of the parameter o correspond to
different curves, which can be plotted in the xy-plane. We now investigate how
the envelope equation for such a family of curves is obtained.

5.10.1 Envelope equations

Suppose f(x,y,01) = 0 and f(x,y,a; + h) = 0 are two neighbouring curves of a
family for which the parameter « differs by a small amount h. Let them intersect
at the point P with coordinates x, y, as shown in figure 5.4. Then the envelope,
indicated by the broken line in the figure, touches f(x, y,o) = 0 at the point Py,
which is defined as the limiting position of P when «; is fixed but i — 0. The
full envelope is the curve traced out by P; as «; changes to generate successive
members of the family of curves. Of course, for any finite h, f(x,y,a; +h) =0 is
one of these curves and the envelope touches it at the point P;.

We are now going to apply Rolle’s theorem, see subsection 2.1.10, with the
parameter o as the independent variable and x and y fixed as constants. In this
context, the two curves in figure 5.4 can be thought of as the projections onto the
xy-plane of the planar curves in which the surface f = f(x, y, «) = 0 meets the
planes o = oy and o = oy + h.

Along the normal to the page that passes through P, as « changes from o;
to oy + h the value of f = f(x, y, «) will depart from zero, because the normal
meets the surface f = f(x, y, o) = 0 only at « = «; and at o« = oy + h. However,
at these end points the values of f = f(x, y, o) will both be zero, and therefore
equal. This allows us to apply Rolle’s theorem and so to conclude that for some
0 in the range 0 < 0 < 1 the partial derivative 0f(x, y, oy + 0h)/0do is zero. When
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h is made arbitrarily small, so that P — Pj, the three defining equations reduce
to two, which define the envelope point P;:

of (x,y,m) _

f,y,0) =0 and 5
O

0. (5.42)
In (5.42) both the function and the gradient are evaluated at o = ;. The equation
of the envelope g(x,y) = 0 is found by eliminating «; between the two equations.

As a simple example we will now solve the problem which when posed mathe-
matically reads ‘calculate the envelope appropriate to the family of straight lines
in the xy-plane whose points of intersection with the coordinate axes are a fixed
distance apart’. In more ordinary language, the problem is about a ladder leaning
against a wall.

» A ladder of length L stands on level ground and can be leaned at any angle against a
vertical wall. Find the equation of the curve bounding the vertical area below the ladder.

We take the ground and the wall as the x- and y-axes respectively. If the foot of the ladder
is a from the foot of the wall and the top is b above the ground then the straight-line
equation of the ladder is
x v
XLy

1
a b ’

where a and b are connected by a®> + b> = L. Expressed in standard form with only one
independent parameter, a, the equation becomes
y

. X
f(x,y,a) = 7 + 7(142 — )"

—1=0. (5.43)

Now, differentiating (5.43) with respect to a and setting the derivative df /da equal to
Zero gives

from which it follows that

Lxl/3
T B 2/3\1/2
(x> + y?3)

Ly1/3

, 2 2\/2 _
and (L a’) 7()(2/34_)/2/3)1/2.

Eliminating a by substituting these values into (5.43) gives, for the equation of the
envelope of all possible positions on the ladder,

Xy = 12,

This is the equation of an astroid (mentioned in exercise 2.19), and, together with the wall
and the ground, marks the boundary of the vertical area below the ladder. «

Other examples, drawn from both geometry and and the physical sciences, are
considered in the exercises at the end of this chapter. The shell trajectory problem
discussed earlier in this section is solved there, but in the guise of a question
about the water bell of an ornamental fountain.
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5.11 Thermodynamic relations

Thermodynamic relations provide a useful set of physical examples of partial
differentiation. The relations we will derive are called Maxwell’s thermodynamic
relations. They express relationships between four thermodynamic quantities de-
scribing a unit mass of a substance. The quantities are the pressure P, the volume
V, the thermodynamic temperature T and the entropy S of the substance. These
four quantities are not independent; any two of them can be varied independently,
but the other two are then determined.
The first law of thermodynamics may be expressed as

dU=TdS—Padv, (5.44)

where U is the internal energy of the substance. Essentially this is a conservation
of energy equation, but we shall concern ourselves, not with the physics, but rather
with the use of partial differentials to relate the four basic quantities discussed
above. The method involves writing a total differential, dU say, in terms of the
differentials of two variables, say X and Y, thus

ou ou
AU = (ﬁ)yd)“r (M)XdY, (5.45)
and then using the relationship
*U o*U

0X3Y ~ aYax
to obtain the required Maxwell relation. The variables X and Y are to be chosen
from P, V, T and S.

» Show that (0T /0V)s = —(0P/dS)y.

Here the two variables that have to be held constant, in turn, happen to be those whose
differentials appear on the RHS of (5.44). And so, taking X as S and Y as V in (5.45), we

have
TdS —PdV =dU = a“U ds + (EU av,
as /)y oV )

ou ou
<6S>V_T and <ﬁ>s—fP.

Differentiating the first expression with respect to ' and the second with respect to S, and
using

and find directly that

we find the Maxwell relation
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»Show that (3S/0V)r = (0P /3T)y.

Applying (5.45) to dS, with independent variables V' and T, we find

oS N
dU=TdS—PdV =T ||— | dV+ | = dT| —PdV.
ov ), oT /),

Similarly applying (5.45) to dU, we find

U U
dU = dV + (== ) dT.

Thus, equating partial derivatives,
8U> <BS> <8U> (&S)
— | =T(=-5] —P and =T|(-=) .
( v ) v )r oT /,, oT J,,

PU Pu _ o (oU\ @ (U
arov —aver: "% ar\av),~aw \ar),

it follows that

il +TLS (Y 22 (B 1.5
v ), ~aTev \oT ), oV oT )], ~ovaT’

Thus finally we get the Maxwell relation

S\ _ (P
ov), \oT),’

The above derivation is rather cumbersome, however, and a useful trick that
can simplify the working is to define a new function, called a potential. The
internal energy U discussed above is one example of a potential but three others
are commonly defined and they are described below.

But, since

» Show that (0S/0V)r = (0P /dT)y by considering the potential U — ST.

We first consider the differential d(U — ST'). From (5.5), we obtain
d(U—ST)=dU —SdT — TdS = —SdT — PdV

when use is made of (5.44). We rewrite U — ST as F for convenience of notation; F is
called the Helmholtz potential. Thus

dF = —SdT — PdV,

0 0
iF =-S5 and oF =—P.
oT ), v )

Using these results together with

and it follows that

*F 0*F
0ToV ~— oVaT’

s\ _ [ep
v ), \oTt),’

which is the same Maxwell relation as before. <

we can see immediately that
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Although the Helmholtz potential has other uses, in this context it has simply
provided a means for a quick derivation of the Maxwell relation. The other
Maxwell relations can be derived similarly by using two other potentials, the
enthalpy, H = U + PV, and the Gibbs free energy, G = U + PV — ST (see
exercise 5.25).

5.12 Differentiation of integrals
We conclude this chapter with a discussion of the differentiation of integrals. Let

us consider the indefinite integral (cf. equation (2.30))

F(x, t)=/f(x,t)dt,

from which it follows immediately that

OF(x,t)
Fra f(x,0).

Assuming that the second partial derivatives of F(x,t) are continuous, we have

2F(x,1)  02F(x,1)

0tdx 0x0t

and so we can write

2 [OF(x,t)} _ 0 {6F(x,t)} of (x.1)

ot ot

0x

0x 0x

Integrating this equation with respect to ¢t then gives

OF(x,1) _ / of (x.1)

0x 0x

d. (5.46)

Now consider the definite integral

I(x) = - f(x,t)dt

= F(x,v) — F(x,u),

where u and v are constants. Differentiating this integral with respect to x, and
using (5.46), we see that

dI(x) _ 0F(x,v) _ OF(x,u)

dx 0x 0x
_ [Taflxy) (M Of(x,1)
= / Ear e dt / o dr
_ [T of(x0)
By

This is Leibnitz’ rule for differentiating integrals, and basically it states that for
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constant limits of integration the order of integration and differentiation can be
reversed.

In the more general case where the limits of the integral are themselves functions
of x, it follows immediately that

t=v(x)
I(x) = /7 o f(x,t)dt

= F(x,v(x)) — F(x,u(x)),

which yields the partial derivatives

oI ol
o = fx o), o = frulx))

Y do (o0 du ot
ov dx = 0Ox

du 0 [0

Consequently

= et — ety ™ = [ o
u(x)
) v(x)
- f(x,v(X))Z—; ~steue e+ [ a (547)

where the partial derivative with respect to x in the last term has been taken
inside the integral sign using (5.46). This procedure is valid because u(x) and v(x)
are being held constant in this term.

» Find the derivative with respect to x of the integral

,(2 .
i = / SIOXE ot

t

Applying (5.47), we see that

dl  sinx? sin x? < fcos xt
o= (2x) — 1)+ / ; dt
. . . . x2
_ 2sinx’  sinx? sin xt
T X x x ],
_; sinx® _sinx
Lo 3 L2
= ;(3smx —2sinx”). <
5.13 Exercises
5.1 Using the appropriate properties of ordinary derivatives, perform the following.
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5.2

53

54

55

5.6

5.7

5.8

(a) Find all the first partial derivatives of the following functions f(x, y):
(i) xzy, (ii) x2 + y? + 4, (iii) sin(x/y), (iv) tan~'(y/x),
V) r(x,y,2) = (x> + y> + 22)1/2

(b) For (i), (ii) and (v), find 0%f/0x?, 0f/0y* and 0*f/0x0y.

(c) For (iv) verify that 0>f/dxdy = 0*f /dyox.

Determine which of the following are exact differentials:

(@) (3x+2)ydx+x(x+1)dy;
(b) ytanxdx+ xtanydy;
(¢) y*(Inx+1)dx + 2xylnxdy;
(d) y*(Inx+ 1)dy + 2xyInxdx;
() [x/(x*+y)]dy — [v/(x* + y*)] dx
Show that the differential
df =x*dy — (" + xy) dx

is not exact, but that dg = (xy?)~'df is exact.
Show that

df = y(1 4+ x — x¥) dx + x(x + 1) dy

is not an exact differential.

Find the differential equation that a function g(x) must satisfy if d¢ = g(x)df
is to be an exact differential. Verify that g(x) = e is a solution of this equation
and deduce the form of ¢(x,y).

The equation 3y = z? 4 3xz defines z implicitly as a function of x and y. Evaluate
all three second partial derivatives of z with respect to x and/or y. Verify that z
is a solution of
a2 2
xg a—z =0.
dyr = ox?
A possible equation of state for a gas takes the form

PV = RTexp (—%)

in which « and R are constants. Calculate expressions for

opP 4 oT
ov ), oT ), oP /),
and show that their product is —1, as stated in section 5.4.
The function G(¢) is defined by
G(t) = F(x,y) = x* + y> + 3xy,
where x(t) = at? and y(t) = 2at. Use the chain rule to find the values of (x,y) at
which G(¢) has stationary values as a function of t. Do any of them correspond

to the stationary points of F(x, ) as a function of x and y?
In the xy-plane, new coordinates s and t are defined by

=1x+y), t=ix-y.

Transform the equation

¢ %9

oxz  0y?

into the new coordinates and deduce that its general solution can be written

(x,y) = f(x+y) +glx—y),
where f(u) and g(v) are arbitrary functions of u and v, respectively.
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59

5.10

5.12

5.13

5.14

5.15

5.16

517

5.18

The function f(x, y) satisfies the differential equation

R Ar
yliff + xg =0.

0x ay
By changing to new variables u = x> — y* and v = 2xy, show that f is, in fact, a
function of x*> — y? only.
If x = e¢"cosf and y = ¢"sin 6, show that

P9 T e (L4,

o o T "oy
where f(x, y) = ¢(u, 0).
Find and evaluate the maxima, minima and saddle points of the function

Fxy) =xp(x* +y* —1).
Show that
f(x,y) = x> — 12xy + 48x + by, b0,

has two, one, or zero stationary points, according to whether |b| is less than,
equal to, or greater than 3.
Locate the stationary points of the function

fx,y) = (¢ = 2y%) exp[—(x* + y*) /a’],

where a is a non-zero constant.

Sketch the function along the x- and y-axes and hence identify the nature and
values of the stationary points.
Find the stationary points of the function

fley)=x"+xy* —12x—y’

and identify their natures.
Find the stationary values of

flx,y) = 4x7 +4y7 + x* — 6x7y7 4+ *

and classify them as maxima, minima or saddle points. Make a rough sketch of
the contours of f in the quarter plane x,y > 0.
The temperature of a point (x, y,z) on the unit sphere is given by

T(x,y,z) =1+xy+yz

By using the method of Lagrange multipliers, find the temperature of the hottest
point on the sphere.
A rectangular parallelepiped has all eight vertices on the ellipsoid

X3P +32=1.

Using the symmetry of the parallelepiped about each of the planes x = 0,
y =0, z =0, write down the surface area of the parallelepiped in terms of
the coordinates of the vertex that lies in the octant x,y,z > 0. Hence find the
maximum value of the surface area of such a parallelepiped.

Two horizontal corridors, 0 < x < a with y > 0, and 0 < y < b with x > 0, meet
at right angles. Find the length L of the longest ladder (considered as a stick)
that may be carried horizontally around the corner.

A barn is to be constructed with a uniform cross-sectional area A throughout
its length. The cross-section is to be a rectangle of wall height h (fixed) and
width w, surmounted by an isosceles triangular roof that makes an angle 6 with
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5.21

5.22

5.23

5.25

the horizontal. The cost of construction is o per unit height of wall and f per
unit (slope) length of roof. Show that, irrespective of the values of o and f, to
minimise costs w should be chosen to satisfy the equation

w* = 164(4 — wh),

and 6 made such that 2tan260 = w/h.
Show that the envelope of all concentric ellipses that have their axes along the
x- and y-coordinate axes, and that have the sum of their semi-axes equal to a
constant L, is the same curve (an astroid) as that found in the worked example
in section 5.10.
Find the area of the region covered by points on the lines

X,y

-+ =1

a b
where the sum of any line’s intercepts on the coordinate axes is fixed and equal
to c.
Prove that the envelope of the circles whose diameters are those chords of a
given circle that pass through a fixed point on its circumference, is the cardioid

r =a(l + cosb).

Here a is the radius of the given circle and (r, 0) are the polar coordinates of the
envelope. Take as the system parameter the angle ¢ between a chord and the
polar axis from which 6 is measured.

A water feature contains a spray head at water level at the centre of a round
basin. The head is in the form of a small hemisphere perforated by many evenly
distributed small holes, through which water spurts out at the same speed, vy, in
all directions.

(a) What is the shape of the ‘water bell’ so formed?
(b) What must be the minimum diameter of the bowl if no water is to be lost?

In order to make a focussing mirror that concentrates parallel axial rays to one
spot (or conversely forms a parallel beam from a point source), a parabolic shape
should be adopted. If a mirror that is part of a circular cylinder or sphere were
used, the light would be spread out along a curve. This curve is known as a
caustic and is the envelope of the rays reflected from the mirror. Denoting by 0
the angle which a typical incident axial ray makes with the normal to the mirror
at the place where it is reflected, the geometry of reflection (the angle of incidence
equals the angle of reflection) is shown in figure 5.5.
Show that a parametric specification of the caustic is

x = Rcos0 (1 +sin’0), y = Rsin’#,
where R is the radius of curvature of the mirror. The curve is, in fact, part of an
epicycloid.
By considering the differential
dG=d(U+PV —ST),

where G is the Gibbs free energy, P the pressure, V' the volume, S the entropy
and T the temperature of a system, and given further that the internal energy U
satisfies

dU=TdS—PdV,
derive a Maxwell relation connecting (0V /0T )p and (0S/0P)7.
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5.26

5.27

5.28

Figure 5.5 The reflecting mirror discussed in exercise 5.24.

Functions P(V,T), U(V,T) and S(V, T) are related by
TdS =dU+PdV,

where the symbols have the same meaning as in the previous question. The
pressure P is known from experiment to have the form

T T
P=— 4=
3+V’

in appropriate units. If
U=aVT*+ BT,

where o, ff, are constants (or, at least, do not depend on T or V'), deduce that o
must have a specific value, but that f may have any value. Find the corresponding
form of S.

As in the previous two exercises on the thermodynamics of a simple gas, the
quantity dS = T~!(dU + P dV) is an exact differential. Use this to prove that

oU P
<W>T_T<ﬁ>V_P'

In the van der Waals model of a gas, P obeys the equation

RT a
Pp=_—__°
V—b V¥

where R, a and b are constants. Further, in the limit ¥ — oo, the form of U
becomes U = ¢T, where c is another constant. Find the complete expression for
uw,T).
The entropy S(H, T'), the magnetisation M(H, T') and the internal energy U(H, T')
of a magnetic salt placed in a magnetic field of strength H, at temperature T,
are connected by the equation

TdS =dU — HdM.

183



PARTIAL DIFFERENTIATION

5.29

By considering d(U — TS — HM) prove that
oMY\ (3§
oT ), \0H ).’

M(H, T) = Mo[1 — exp(—aH/T)].

For a particular salt,

Show that if, at a fixed temperature, the applied field is increased from zero to a
strength such that the magnetization of the salt is %Mo, then the salt’s entropy
decreases by an amount

M,
oG4

Using the results of section 5.12, evaluate the integral
O xy o
I(y) = / € T Ssmnx
o X

Hence show that

The integral

*© 2
/ e dx
—o0

has the value (m/2)"/2. Use this result to evaluate

J(n) = / X2 dx,
where n is a positive integer. Express your answer in terms of factorials.

The function f(x) is differentiable and f(0) = 0. A second function g(y) is defined
by

7 f(x)dx
g(y)f/0 N

de _ [ df s
dy — J, dx fy—x
For the case f(x) = x", prove that
d'g
¥ =2(n!)/y.

The functions f(x,t) and F(x) are defined by

Prove that

Verify, by explicit calculation, that
dF * 0f(x,t)
— = f(x, ————dt.
dx Flox) + ,/0 0x
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5.14 HINTS AND ANSWERS

5.33

5.34

5.35

5.1

It

1 ¢ — 1
I(o) = / )H—dx, o> —1,
o Inx

what is the value of I(0)? Show that

—x*=x"Inx,

do
and deduce that
d 1
—I .
do (@) = a1

Hence prove that I(x) = In(1 4 ).
Find the derivative, with respect to x, of the integral

3x
I(x) :/ exp xt dt.
The function G(t, ¢) is defined for 0 <t < 7 by

—costsiné for & <t,
G(t,¢) =
) {—sintcosf for ¢ > t.

Show that the function x(¢) defined by

(1) = /0 "G (@) de

satisfies the equation

d’x .
7 +x=f(),

where f(f) can be any arbitrary (continuous) function. Show further that x(0) =
[dx/dt],—, = 0, again for any f(t), but that the value of x(n) does depend upon
the form of f(t)

[The function G(t, &) is an example of a Green’s function, an important
concept in the solution of differential equations and one studied extensively in
later chapters.]

5.14 Hints and answers

(a) ( ) 2xy, (11) 2x,2y; (111) cos(x/y —x/y?)cos(x/y);

v/ + 2, x/ (7 + )5 (v) x/r, y/r Z/r
(b) (1) 2y 0,2x; (ii) 2,2,0; (v) (y? +zz)r 3 (X2 4 23, —xyr 3.
(c) Both second derivatives are equal to (y2 —x?)(x* + yz)’2
2x # —2y — x. For g, both sides of equation (5.9) equal y—2
0%z/0x* = 2xz(z22 +x)73, 0%z /0x0y = (22 — x)(z* +x)* ("22/ =—2z(z2+x)7.
(0,0), (a/4,—a) and (16a,—8a). Only the saddle point dt (O, 0)
The transformed equation is 2(x> + y?)df /dv = 0; hence f does not depend on v.
Maxima, equal to 1/8, at +(1/2,—1/2), minima, equal to —1/8, at +(1/2,1/2),
saddle points, equalling 0 at (0,0), (0,+1), (£1,0).
Maxima equal to a’e™!' at (+a,0), minima equal to —2a’e~! at (0,+a), saddle
point equalling 0 at (0,0).
Minimum at (0,0); saddle points at (+1,+1). To help with sketching the contours,
determine the behaviour of g(x) = f(x, x).
The Lagrange multiplier method gives z = y = x/2, for a maximal area of 4.

185



PARTIAL DIFFERENTIATION

5.23

5.25

5.27

5.29

5.33
5.35

The cost always includes 2oh, which can therefore be ignored in the optimisation.
With Lagrange multiplier 7, sin 0 = Aw/(4) and f8 sec 0 — 1 Aw tan 0 = Jh, leading
to the stated results. }

The envelope of the lines x/a+y/(c—a)—1 =0, as a is varied, is \/_+ W= \/—
Area = ¢?/6.

(a) Using o = cot 0, where 6 is the initial angle a jet makes with the vertical, the

equation is f(z, p, o) = z—pa+[gp>(1+02)/(2v3)], and setting df /0o = O gives
o = v2/(gp). The water bell has a parabolic profile z = v2/(2g) — gp?/(203).

(b) Setting z = 0 gives the minimum diameter as 2v3/g.

Show that (0G/0P)r = V and (0G/0T)p = —S. From each result, obtain an
expression for 0>°G/0TAP and equate these, giving (0V/0T)p = —(0S/0P)r.
Find expressions for (0S/dV)r and (0S/0T)y, and equate 0>S/0VAOT with
328/0ToV. U(V,T)=cT —aV~"

dl /dy = —Im[ ;" exp —xy + nc)dx] —1/(1 + y?). Integrate dI /dy from 0 to cc.

I(00) =0 and I1(0) =

Integrate the RHS of the equation by parts, before differentiating with respect
to y. Repeated application of the method establishes the result for all orders of
derivative.
1(0) = 0; use Leibnitz’ rule.

Write x(t) = —costfol siné f(£)dé — sint [ cos & f(¢)dé and differentiate each
term as a product to obtain dx/dt. Obtain d’>x/dt> in a similar way. Note that
integrals that have equal lower and upper limits have value zero. The value of

x(m) is [y sin¢ f(&)dé
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6

Multiple integrals

For functions of several variables, just as we may consider derivatives with respect
to two or more of them, so may the integral of the function with respect to more
than one variable be formed. The formal definitions of such multiple integrals are
extensions of that for a single variable, discussed in chapter 2. We first discuss
double and triple integrals and illustrate some of their applications. We then
consider changing the variables in multiple integrals and discuss some general
properties of Jacobians.

6.1 Double integrals

For an integral involving two variables — a double integral — we have a function,
f(x,y) say, to be integrated with respect to x and y between certain limits. These
limits can usually be represented by a closed curve C bounding a region R in the
xy-plane. Following the discussion of single integrals given in chapter 2, let us
divide the region R into N subregions AR, of area A4y, p = 1,2,...,N, and let
(xp, yp) be any point in subregion AR,. Now consider the sum

N
S =" f(xpyp)A4p,

p=1

and let N — oo as each of the areas A4, — 0. If the sum S tends to a unique
limit, I, then this is called the double integral of f(x,y) over the region R and is
written

1= /R fx,p)dA, (6.1)

where dA stands for the element of area in the xy-plane. By choosing the
subregions to be small rectangles each of area A4 = AxAy, and letting both Ax
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Figure 6.1 A simple curve C in the xy-plane, enclosing a region R.

and Ay — 0, we can also write the integral as

-/ /R Fx,v)dxdy, (62)

where we have written out the element of area explicitly as the product of the
two coordinate differentials (see figure 6.1).

Some authors use a single integration symbol whatever the dimension of the
integral; others use as many symbols as the dimension. In different circumstances
both have their advantages. We will adopt the convention used in (6.1) and (6.2),
that as many integration symbols will be used as differentials explicitly written.

The form (6.2) gives us a clue as to how we may proceed in the evaluation
of a double integral. Referring to figure 6.1, the limits on the integration may
be written as an equation c¢(x, y) = 0 giving the boundary curve C. However, an
explicit statement of the limits can be written in two distinct ways.

One way of evaluating the integral is first to sum up the contributions from
the small rectangular elemental areas in a horizontal strip of width dy (as shown
in the figure) and then to combine the contributions of these horizontal strips to
cover the region R. In this case, we write

y=d x=x2(y)
1= / { / f(x,y)dx} &y, 63)
Jy=c x=x1(y)

where x = x;(y) and x = x»(y) are the equations of the curves TSV and TUV
respectively. This expression indicates that first f(x,y) is to be integrated with
respect to x (treating y as a constant) between the values x = x(y) and x = x3(y)
and then the result, considered as a function of y, is to be integrated between the
limits y = ¢ and y = d. Thus the double integral is evaluated by expressing it in
terms of two single integrals called iterated (or repeated) integrals.
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An alternative way of evaluating the integral, however, is first to sum up the
contributions from the elemental rectangles arranged into vertical strips and then
to combine these vertical strips to cover the region R. We then write

x=b ry=y2(x)
-/ { / f(x,y)dy} dx, (64)
x=a y=y1(x)

where y = yi(x) and y = y»(x) are the equations of the curves STU and SVU
respectively. In going to (6.4) from (6.3), we have essentially interchanged the
order of integration.

In the discussion above we assumed that the curve C was such that any line
parallel to either the x- or y-axis intersected C at most twice. In general, provided
f(x,y) is continuous everywhere in R and the boundary curve C has this simple
shape, the same result is obtained irrespective of the order of integration. In cases
where the region R has a more complicated shape, it can usually be subdivided
into smaller simpler regions R;, R, etc. that satisfy this criterion. The double
integral over R is then merely the sum of the double integrals over the subregions.

1 :// x%y dx dy,
R

where R is the triangular area bounded by the lines x =0, y = 0 and x + y = 1. Reverse
the order of integration and demonstrate that the same result is obtained.

» Evaluate the double integral

The area of integration is shown in figure 6.2. Suppose we choose to carry out the
integration with respect to y first. With x fixed, the range of y is 0 to 1 — x. We can

therefore write
x=1 y=l-x
I= / {/ x%y dy} dx
Jx=0 UJy=0

x=11,2,27V=1-x 1201 _ v)2
R e [y L
x=0 2 y=0 0 2 60

Alternatively, we may choose to perform the integration with respect to x first. With y
fixed, the range of x is 0 to 1 — y, so we have

y=1 x=1-y
I= / {/ xzydx} dy
Jy=0 x=0

ST e [ U L
= L3 Lo 0 3 60’

As expected, we obtain the same result irrespective of the order of integration. <«

We may avoid the use of braces in expressions such as (6.3) and (6.4) by writing

(6.4), for example, as
b y2(x)
1= [ax [ v,
a Jyi(x)

where it is understood that each integral symbol acts on everything to its right,
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y
1
dy
x+y=1
R /
0
0 dx 1 X

Figure 6.2 The triangular region whose sides are the axes x =0, y = 0 and
the line x+y = 1.

and that the order of integration is from right to left. So, in this example, the
integrand f(x, y) is first to be integrated with respect to y and then with respect
to x. With the double integral expressed in this way, we will no longer write the
independent variables explicitly in the limits of integration, since the differential
of the variable with respect to which we are integrating is always adjacent to the
relevant integral sign.

Using the order of integration in (6.3), we could also write the double integral as

d X2(y)
1= / dy / dx f(x, 7).
¢ x1(y)

Occasionally, however, interchange of the order of integration in a double integral
is not permissible, as it yields a different result. For example, difficulties might
arise if the region R were unbounded with some of the limits infinite, though in
many cases involving infinite limits the same result is obtained whichever order
of integration is used. Difficulties can also occur if the integrand f(x,y) has any
discontinuities in the region R or on its boundary C.

6.2 Triple integrals

The above discussion for double integrals can easily be extended to triple integrals.
Consider the function f(x,y,z) defined in a closed three-dimensional region R.
Proceeding as we did for double integrals, let us divide the region R into N
subregions AR, of volume AV, p=1,2,...,N, and let (x,, y,,z,) be any point in
the subregion AR,. Now we form the sum

N
S = Zf(xpa Yp:Zp)AV 5

p=1
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and let N — o as each of the volumes AV, — 0. If the sum S tends to a unique
limit, I, then this is called the triple integral of f(x,y,z) over the region R and is
written

I =/R fx,y,2)dV, (6.5)

where dV stands for the element of volume. By choosing the subregions to be
small cuboids, each of volume AV = AxAyAz, and proceeding to the limit, we
can also write the integral as

I= ///Rf(x,y,z)dxdydz, (6.6)

where we have written out the element of volume explicitly as the product of the
three coordinate differentials. Extending the notation used for double integrals,
we may write triple integrals as three iterated integrals, for example,

X2 V2(x) 22(x,)
- / dx / dy / dz f(x.7.2).
v new Jae

where the limits on each of the integrals describe the values that x, y and z take
on the boundary of the region R. As for double integrals, in most cases the order
of integration does not affect the value of the integral.

We can extend these ideas to define multiple integrals of higher dimensionality
in a similar way.

6.3 Applications of multiple integrals

Multiple integrals have many uses in the physical sciences, since there are numer-
ous physical quantities which can be written in terms of them. We now discuss a
few of the more common examples.

6.3.1 Areas and volumes

Multiple integrals are often used in finding areas and volumes. For example, the

integral
A=/dA=//dxdy
R R

is simply equal to the area of the region R. Similarly, if we consider the surface
z = f(x,y) in three-dimensional Cartesian coordinates then the volume under this
surface that stands vertically above the region R is given by the integral

Vz/l;szz//Rf(x,y)dxdy,

where volumes above the xy-plane are counted as positive, and those below as
negative.
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dV =dxdydz

Figure 6.3 The tetrahedron bounded by the coordinate surfaces and the
plane x/a + y/b +z/c = 1 is divided up into vertical slabs, the slabs into
columns and the columns into small boxes.

» Find the volume of the tetrahedron bounded by the three coordinate surfaces x =0,y =0
and z =0 and the plane x/a+y/b+z/c = 1.

Referring to figure 6.3, the elemental volume of the shaded region is given by dV = z dx dy,
and we must integrate over the triangular region R in the xy-plane whose sides are x = 0,
y =0 and y = b — bx/a. The total volume of the tetrahedron is therefore given by

a b—bx/a
_ _ (1Y X
V—.//dexdy—‘/o dx./o dyc(l b a)

= c/ dx [y - y—z - ﬂ])‘:h”"‘/“
Jo 26 al,

[ae(BE b vy e
('0 N2 " a72)7 6

Alternatively, we can write the volume of a three-dimensional region R as

V=/RdV=//Rdxdydz, (6.7)

where the only difficulty occurs in setting the correct limits on each of the
integrals. For the above example, writing the volume in this way corresponds to
dividing the tetrahedron into elemental boxes of volume dxdydz (as shown in
figure 6.3); integration over z then adds up the boxes to form the shaded column
in the figure. The limits of integration are z = 0 to z = ¢ (1 — y/b—x/a), and
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the total volume of the tetrahedron is given by

a b—bx/a (f(lfy/bfx/a)
V=/ dx/ dy/ dz, (6.8)
0 0 0

which clearly gives the same result as above. This method is illustrated further in
the following example.

» Find the volume of the region bounded by the paraboloid z = x> + y*> and the plane
z =2y.

The required region is shown in figure 6.4. In order to write the volume of the region in
the form (6.7), we must deduce the limits on each of the integrals. Since the integrations
can be performed in any order, let us first divide the region into vertical slabs of thickness
dy perpendicular to the y-axis, and then as shown in the figure we cut each slab into
horizontal strips of height dz, and each strip into elemental boxes of volume dV = dx dy dz.
Integrating first with respect to x (adding up the elemental boxes to get a horizontal strip),

the limits on x are x = —y/z — y? to x = /z — y2. Now integrating with respect to z
(adding up the strips to form a vertical slab) the limits on z are z = y? to z = 2y. Finally,
integrating with respect to y (adding up the slabs to obtain the required region), the limits
on y are y = 0 and y = 2, the solutions of the simultaneous equations z = 0% + y? and
z = 2y. So the volume of the region is

2 2y N 2 2y
V:/dy/ dz/ dx:/dy/ dz2y/z — 2
0 y? . —\/2—7 0 y2

2 2
z=2y
= [y =T = [Cavier -
The integral over y may be evaluated straightforwardly by making the substitution y =
1+ sinu, and gives V =n/2. «

In general, when calculating the volume (area) of a region, the volume (area)
elements need not be small boxes as in the previous example, but may be of any
convenient shape. The latter is usually chosen to make evaluation of the integral
as simple as possible.

6.3.2 Masses, centres of mass and centroids

It is sometimes necessary to calculate the mass of a given object having a non-
uniform density. Symbolically, this mass is given simply by

M:/dM,

where dM is the element of mass and the integral is taken over the extent of the
object. For a solid three-dimensional body the element of mass is just dM = pdV,
where dV is an element of volume and p is the variable density. For a laminar
body (i.e. a uniform sheet of material) the element of mass is dM = ¢ dA, where
¢ is the mass per unit area of the body and d4 is an area element. Finally, for
a body in the form of a thin wire we have dM = Jds, where 1 is the mass per
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dV =dxdydz

X

Figure 6.4 The region bounded by the paraboloid z = x> 4+ y? and the plane
z = 2y is divided into vertical slabs, the slabs into horizontal strips and the
strips into boxes.

unit length and ds is an element of arc length along the wire. When evaluating
the required integral, we are free to divide up the body into mass elements in
the most convenient way, provided that over each mass element the density is
approximately constant.

» Find the mass of the tetrahedron bounded by the three coordinate surfaces and the plane
x/a+y/b+z/c=1, if its density is given by p(x,y,z) = po(1 + x/a).

From (6.8), we can immediately write down the mass of the tetrahedron as

a b—bx/a e(1-y/b—x/a)
M=/p0(l+z) le=/ dxp()(l-ﬁ-z)/ dy/ dz,
JR a 0 a’ Jo Jo

where we have taken the density outside the integrations with respect to z and y since it
depends only on x. Therefore the integrations with respect to z and y proceed exactly as
they did when finding the volume of the tetrahedron, and we have

“ x\ (bx* bx b

We could have arrived at (6.9) more directly by dividing the tetrahedron into triangular
slabs of thickness dx perpendicular to the x-axis (see figure 6.3), each of which is of
constant density, since p depends on x alone. A slab at a position x has volume dV =
%c(l —x/a)(b — bx/a)dx and mass dM = pdV = po(1 + x/a)dV. Integrating over x we
again obtain (6.9). This integral is easily evaluated and gives M = %abcpo. <«
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The coordinates of the centre of mass of a solid or laminar body may also be
written as multiple integrals. The centre of mass of a body has coordinates X, 7,
Z given by the three equations

X/dM:/de
j)/dM=/ydM
Z/dM=/sz,

where again dM is an element of mass as described above, x, y, z are the
coordinates of the centre of mass of the element dM and the integrals are taken
over the entire body. Obviously, for any body that lies entirely in, or is symmetrical
about, the xy-plane (say), we immediately have z = 0. For completeness, we note
that the three equations above can be written as the single vector equation (see

chapter 7)
= % /rdM,

where T is the position vector of the body’s centre of mass with respect to the
origin, r is the position vector of the centre of mass of the element dM and
M = [dM is the total mass of the body. As previously, we may divide the body
into the most convenient mass elements for evaluating the necessary integrals,
provided each mass element is of constant density.

We further note that the coordinates of the centroid of a body are defined as
those of its centre of mass if the body had uniform density.

» Find the centre of mass of the solid hemisphere bounded by the surfaces x>+ y* +z* = a?

and the xy-plane, assuming that it has a uniform density p.

Referring to figure 6.5, we know from symmetry that the centre of mass must lie on
the z-axis. Let us divide the hemisphere into volume elements that are circular slabs of
thickness dz parallel to the xy-plane. For a slab at a height z, the mass of the element is
dM = pdV = pn(a®—z?)dz. Integrating over z, we find that the z-coordinate of the centre
of mass of the hemisphere is given by

E/ pr(a® —2%)dz :/ zpn(a® — 2%) dz.
0 0

The integrals are easily evaluated and give Z = 3a/8. Since the hemisphere is of uniform
density, this is also the position of its centroid. «

6.3.3 Pappus’ theorems

The theorems of Pappus (which are about seventeen centuries old) relate centroids
to volumes of revolution and areas of surfaces, discussed in chapter 2, and may be
useful for finding one quantity given another that can be calculated more easily.
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X

Figure 6.5 The solid hemisphere bounded by the surfaces x> + y* + z2 = a?
and the xy-plane.

y

X

Figure 6.6 An area A in the xy-plane, which may be rotated about the x-axis
to form a volume of revolution.

If a plane area is rotated about an axis that does not intersect it then the solid
so generated is called a volume of revolution. Pappus’ first theorem states that the
volume of such a solid is given by the plane area 4 multiplied by the distance
moved by its centroid (see figure 6.6). This may be proved by considering the
definition of the centroid of the plane area as the position of the centre of mass
if the density is uniform, so that

1
y= / ydA.

Now the volume generated by rotating the plane area about the x-axis is given by
V= /27zy dA = 2nyA,
which is the area multiplied by the distance moved by the centroid.
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ds,

RY

Figure 6.7 A curve in the xy-plane, which may be rotated about the x-axis
to form a surface of revolution.

Pappus’ second theorem states that if a plane curve is rotated about a coplanar
axis that does not intersect it then the area of the surface of revolution so generated
is given by the length of the curve L multiplied by the distance moved by its
centroid (see figure 6.7). This may be proved in a similar manner to the first
theorem by considering the definition of the centroid of a plane curve,

1
y=1 / yds,
and noting that the surface area generated is given by
S = / 2nyds = 2nyL,

which is equal to the length of the curve multiplied by the distance moved by its
centroid.

» A semicircular uniform lamina is freely suspended from one of its corners. Show that its
straight edge makes an angle of 23.0° with the vertical.

Referring to figure 6.8, the suspended lamina will have its centre of gravity C vertically
below the suspension point and its straight edge will make an angle 0 = tan~!(d/a) with
the vertical, where 2a is the diameter of the semicircle and d is the distance of its centre
of mass from the diameter.

Since rotating the lamina about the diameter generates a sphere of volume %naﬁ Pappus’
first theorem requires that

%na3 =2nd X %naz.

Hence d = 3 and 0 = tan™' ;£ =23.0°. «
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Figure 6.8 Suspending a semicircular lamina from one of its corners.

6.3.4 Moments of inertia

For problems in rotational mechanics it is often necessary to calculate the moment
of inertia of a body about a given axis. This is defined by the multiple integral

I :/ﬂdM,

where [ is the distance of a mass element dM from the axis. We may again choose
mass elements convenient for evaluating the integral. In this case, however, in
addition to elements of constant density we require all parts of each element to
be at approximately the same distance from the axis about which the moment of
inertia is required.

» Find the moment of inertia of a uniform rectangular lamina of mass M with sides a and
b about one of the sides of length b.

Referring to figure 6.9, we wish to calculate the moment of inertia about the y-axis.
We therefore divide the rectangular lamina into elemental strips parallel to the y-axis of
width dx. The mass of such a strip is dM = obdx, where o is the mass per unit area of
the lamina. The moment of inertia of a strip at a distance x from the y-axis is simply
dl = x>dM = obx*dx. The total moment of inertia of the lamina about the y-axis is
therefore

a 3
I= / obx?dx = m.
Jo 3

Since the total mass of the lamina is M = gab, we can write [ = %Maz. <
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dM = obdx

dx a X

Figure 6.9 A uniform rectangular lamina of mass M with sides a and b can
be divided into vertical strips.

6.3.5 Mean values of functions

In chapter 2 we discussed average values for functions of a single variable. This
is easily extended to functions of several variables. Let us consider, for example,
a function f(x,y) defined in some region R of the xy-plane. Then the average
value f of the function is given by

h /R dA = /R f(x,y) dA. (6.10)

This definition is easily extended to three (and higher) dimensions; if a function
f(x,y,z) is defined in some three-dimensional region of space R then the average
value f of the function is given by

f/RdV:/Rf(x,y,z)dV. (6.11)

» A tetrahedron is bounded by the three coordinate surfaces and the plane x/a+y/b+z/c =
1 and has density p(x,y,z) = po(l + x/a). Find the average value of the density.

From (6.11), the average value of the density is given by

p/dV=/p(x,y,z)dV.
R R

Now the integral on the LHS is just the volume of the tetrahedron, which we found in
subsection 6.3.1 to be V = labc, and the integral on the RHS is its mass M = 2 abcpy,

calculated in subsection 6.3.2. Therefore p = M/V = %po. <

6.4 Change of variables in multiple integrals

It often happens that, either because of the form of the integrand involved or
because of the boundary shape of the region of integration, it is desirable to
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u = constant

v = constant

Figure 6.10 A region of integration R overlaid with a grid formed by the
family of curves u = constant and v = constant. The parallelogram KLMN
defines the area element dA4,,.

express a multiple integral in terms of a new set of variables. We now consider
how to do this.

6.4.1 Change of variables in double integrals

Let us begin by examining the change of variables in a double integral. Suppose
that we require to change an integral

= //R fx,y)dxdy,

in terms of coordinates x and y, into one expressed in new coordinates u and v,
given in terms of x and y by differentiable equations u = u(x, y) and v = v(x, y)
with inverses x = x(u,v) and y = y(u,v). The region R in the xy-plane and the
curve C that bounds it will become a new region R’ and a new boundary C’ in
the uv-plane, and so we must change the limits of integration accordingly. Also,
the function f(x,y) becomes a new function g(u,v) of the new coordinates.

Now the part of the integral that requires most consideration is the area element.
In the xy-plane the element is the rectangular area dA,, = dxdy generated by
constructing a grid of straight lines parallel to the x- and y- axes respectively.
Our task is to determine the corresponding area element in the uv-coordinates. In
general the corresponding element dA4,, will not be the same shape as dA,,, but
this does not matter since all elements are infinitesimally small and the value of
the integrand is considered constant over them. Since the sides of the area element
are infinitesimal, d4,, will in general have the shape of a parallelogram. We can
find the connection between dA4,, and dA,, by considering the grid formed by the
family of curves u = constant and v = constant, as shown in figure 6.10. Since v
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is constant along the line element K L, the latter has components (dx/du) du and
(0y/0u)du in the directions of the x- and y-axes respectively. Similarly, since u
is constant along the line element K N, the latter has corresponding components
(0x/0v)dv and (0y/dv)dv. Using the result for the area of a parallelogram given
in chapter 7, we find that the area of the parallelogram K LMN is given by

dA“”Z% %U v du

0x Jyd_é‘x 0y ’

we have

ax,y)
o(u,v)
The reader acquainted with determinants will notice that the Jacobian can also
be written as the 2 x 2 determinant

dAm; =

‘ dudv.

ox oy
o(x,y) du Ou

J= =
o(u,v) a_x @_y
v 0v

Such determinants can be evaluated using the methods of chapter 8.
So, in summary, the relationship between the size of the area element generated
by dx, dy and the size of the corresponding area element generated by du, dv is

a(x,y)
0(u,v)

This equality should be taken as meaning that when transforming from coordi-
nates x,y to coordinates u,v, the area element dxdy should be replaced by the
expression on the RHS of the above equality. Of course, the Jacobian can, and
in general will, vary over the region of integration. We may express the double
integral in either coordinate system as

1=//Rf(x,y)dxdy=//l{,g<u,v>

When evaluating the integral in the new coordinate system, it is usually advisable
to sketch the region of integration R’ in the uv-plane.

dxdy = ‘ ‘ dudv.

0
0

(x, ) i
o) ‘ dudv. (6.12)
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» Evaluate the double integral

i =// (a+ V2 F12) dxdy,

where R is the region bounded by the circle x> + y> = a?.

In Cartesian coordinates, the integral may be written

\/a~7,\~
I—/dx/ x2+y2),

and can be calculated directly. However, because of the circular boundary of the integration
region, a change of variables to plane polar coordinates p, ¢ is indicated. The relationship
between Cartesian and plane polar coordinates is given by x = pcos¢ and y = psin¢.
Using (6.12) we can therefore write

a(x, y)‘ dpdo.

1—/(+ P

where R’ is the rectangular region in the p(/)—plane whose sides are p =0, p=a, ¢ =0
and ¢ = 2n. The Jacobian is easily calculated, and we obtain

_0xy) _| cosé sin ¢
~a(p. ) —psing  pcos¢

So the relationship between the area elements in Cartesian and in plane polar coordinates is

dxdy = pdpdg.

= p(cos? ¢ +sin® ¢p) =

Therefore, when expressed in plane polar coordinates, the integral is given by

1= ~//R,(a+p>pdpd¢>

21 a a 2 314 57[(13
=/ d¢/ dp(a+p)p=2n[%+%} =3 . <
0 0 0

6.4.2 Evaluation of the integral I = ff% e dx

By making a judicious change of variables, it is sometimes possible to evaluate
an integral that would be intractable otherwise. An important example of this
method is provided by the evaluation of the integral

© 2
I= / e dx.
J =0

Its value may be found by first constructing I, as follows:

00 5 o0 ) o0 o0 5 )
I? =/ e dx / e dy =/ dx/ dy e~ ")
—0 —0 —o —0
=// e*(xz*'yz)dxdy,
R
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S

Figure 6.11 The regions used to illustrate the convergence properties of the
integral I(a) = fa e dx as a — oo,

where the region R is the whole xy-plane. Then, transforming to plane polar
coordinates, we find

2n
///e o pdpdgp = / dqb/ dp pe” — [—le*"_] =7.

Therefore the original integral is given by I = ﬁ Because the integrand is an
even function of x, it follows that the value of the integral from 0 to oo is simply
Jr/2.

We note, however, that unlike in all the previous examples, the regions of
integration R and R’ are both infinite in extent (i.e. unbounded). It is therefore
prudent to derive this result more rigorously; this we do by considering the

integral
I(a) =/ e dx.

I*a) = / / e gx dy,
R

where R is the square of side 2a centred on the origin. Referring to figure 6.11,
since the integrand is always positive the value of the integral taken over the
square lies between the value of the integral taken over the region bounded by
the inner circle of radius a and the value of the integral taken over the outer
circle of radius /2a. Transforming to plane polar coordinates as above, we may

We then have

203



MULTIPLE INTEGRALS

=
s==ss=qpe=s===as

RY

Figure 6.12 A three-dimensional region of integration R, showing an el-
ement of volume in u,v,w coordinates formed by the coordinate surfaces
u = constant, v = constant, w = constant.

evaluate the integrals over the inner and outer circles respectively, and we find
b (1 - 37”2) <Ia)<n (1 — efzaz) .

Taking the limit a — oo, we find I?(a) — n. Therefore I = ﬁ, as we found previ-
ously. Substituting x = \/&y shows that the corresponding integral of exp(—aux?)
has the value /7/«. We use this result in the discussion of the normal distribution
in chapter 30.

6.4.3 Change of variables in triple integrals

A change of variable in a triple integral follows the same general lines as that for
a double integral. Suppose we wish to change variables from x, y, z to u, v, w.
In the x, y, z coordinates the element of volume is a cuboid of sides dx, dy, dz
and volume dV,,. = dxdydz. If, however, we divide up the total volume into
infinitesimal elements by constructing a grid formed from the coordinate surfaces
u = constant, v = constant and w = constant, then the element of volume dV,,,,
in the new coordinates will have the shape of a parallelepiped whose faces are the
coordinate surfaces and whose edges are the curves formed by the intersections of
these surfaces (see figure 6.12). Along the line element PQ the coordinates v and
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w are constant, and so PQ has components (0x/du) du, (0y/du) du and (0z/du) du
in the directions of the x-, y- and z- axes respectively. The components of the
line elements PS and ST are found by replacing u by v and w respectively.

The expression for the volume of a parallelepiped in terms of the components
of its edges with respect to the x-, y- and z-axes is given in chapter 7. Using this,
we find that the element of volume in u,v, w coordinates is given by

a(x,y,2)

AVipw =
oo, w)

dudvdw,

where the Jacobian of x, y, z with respect to u, v, w is a short-hand for a 3 x 3
determinant:
ox 0dy 0z
ou ou du
a(xaysz) _ ox 6y 0z

o(u,v,w) v v ov

ox 0Jdy 0Oz

oW aw  ow
So, in summary, the relationship between the elemental volumes in multiple
integrals formulated in the two coordinate systems is given in Jacobian form by

_ |9 y.2)

dxdydz
T a(u,v,w)

dudv dw,

and we can write a triple integral in either set of coordinates as

I—///f\cy, dxdydz—///, u,v, w ‘gx,y:Z;

» Find an expression for a volume element in spherical polar coordinates, and hence calcu-
late the moment of inertia about a diameter of a uniform sphere of radius a and mass M.

dudv dw.

Spherical polar coordinates r, 0, ¢ are defined by
x=rsinfcos¢p, y=rsinfsing, z=rcosf

(and are discussed fully in chapter 10). The required Jacobian is therefore

0(x,7,7) sin 0 cos ¢ sin 0 sin ¢ cos
J=_"""=| rcosfcos¢ rcosfsing —rsin6
(r,0,9) —rsinfsin¢ rsinfcos ¢ 0

The determinant is most easily evaluated by expanding it with respect to the last column
(see chapter 8), which gives

J = cos 0(r* sin 0 cos 0) + r sin O(r sin® )
= r?sin 6(cos® 0 + sin® 0) = r? sin 6.
Therefore the volume element in spherical polar coordinates is given by
o(x,y,2)

dv = 0.0.9)

drd0d¢ = r*sin0drdo do,
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which agrees with the result given in chapter 10.
If we place the sphere with its centre at the origin of an x, y, z coordinate system then
its moment of inertia about the z-axis (which is, of course, a diameter of the sphere) is

I:/(x2+y2) dM:p/(xz-i-yz) dv,

where the integral is taken over the sphere, and p is the density. Using spherical polar
coordinates, we can write this as

I:p/// (r*sin’0) r? sin 0 dr d0 d¢
2n
=p/ d<b/ do sin® 0/ drrt

—p><2n><—>< @ = nap

5

Since the mass of the sphere is M = ;na p, the moment of inertia can also be written as
I =32Md’ <

6.4.4 General properties of Jacobians

Although we will not prove it, the general result for a change of coordinates in
an n-dimensional integral from a set x; to a set y; (where i and j both run from
1ton)is

A(x1,%2,..., Xn)
15 Y25 V)
where the n-dimensional Jacobian can be written as an n X n determinant (see
chapter 8) in an analogous way to the two- and three-dimensional cases.

For readers who already have sufficient familiarity with matrices (see chapter 8)
and their properties, a fairly compact proof of some useful general properties
of Jacobians can be given as follows. Other readers should turn straight to the
results (6.16) and (6.17) and return to the proof at some later time.

Consider three sets of variables x;, y; and z;, with i running from 1 to n for
each set. From the chain rule in partial differentiation (see (5.17)), we know that

0x; 0x; Oy
- .1
0z; Z Oyi 0zj (6.13)

dxldx2"'dxn= dyl dyZ"'dyna

Now let A, B and C be the matrices whose ijth elements are 0x;/0y;, 0yi/0z; and
0x;/0z; respectively. We can then write (6.13) as the matrix product

n
cij=Y axh; or  C=AB. (6.14)

We may now use the general result for the determinant of the product of two
matrices, namely |AB| = |A||B|, and recall that the Jacobian
a(x1,..., Xy)

= |A|, 6.15
a(y1a~~~ayn) | ‘ ( )

xy =
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and similarly for J,. and J.. On taking the determinant of (6.14), we therefore
obtain

o = Jpdy:
or, in the usual notation,

O(X1,...,Xy) _ (x1,...,Xp) O(V1, -+ V)

0(z1,...,2n) OWy,-s¥n) 6(21,...,2,,).

As a special case, if the set z; is taken to be identical to the set x;, and the
obvious result J,, = 1 is used, we obtain

(6.16)

Jogdyx =1
or, in the usual notation,

A1y Xa) _ {am,...,m]”
OV1s---sYn) 0(X1,..., %) '

The similarity between the properties of Jacobians and those of derivatives is
apparent, and to some extent is suggested by the notation. We further note from
(6.15) that since |A| = |AT|, where AT is the transpose of A, we can interchange the
rows and columns in the determinantal form of the Jacobian without changing
its value.

(6.17)

6.5 Exercises

6.1 Identify the curved wedge bounded by the surfaces y> = 4ax, x +z = a and
z =0, and hence calculate its volume V.

6.2 Evaluate the volume integral of x? + y? + z? over the rectangular parallelepiped
bounded by the six surfaces x = +a, y = +b and z = +c.

6.3 Find the volume integral of x?y over the tetrahedral volume bounded by the
planes x =0,y =0,z=0,and x+y+z = 1.

6.4 Evaluate the surface integral of f(x,y) over the rectangle 0 < x <a,0<y <b
for the functions

@ [ = o=, (B [ =b—y+x)
x*+y
6.5 Calculate the volume of an ellipsoid as follows:

(a) Prove that the area of the ellipse

+*7:1

Sl
=

is mab.
(b) Use this result to obtain an expression for the volume of a slice of thickness
dz of the ellipsoid
2 2 2
e
a b* " ¢?

Hence show that the volume of the ellipsoid is 4rnabc/3.
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6.6

6.7

6.8

6.9

6.10

The function
Z
Y(r)=A <2_ 71‘) e Zr/2a

gives the form of the quantum-mechanical wavefunction representing the electron
in a hydrogen-like atom of atomic number Z, when the electron is in its first
allowed spherically symmetric excited state. Here r is the usual spherical polar
coordinate, but, because of the spherical symmetry, the coordinates 6 and ¢ do
not appear explicitly in . Determine the value that A (assumed real) must have
if the wavefunction is to be correctly normalised, ie. if the volume integral of
[¥|? over all space is to be equal to unity.

In quantum mechanics the electron in a hydrogen atom in some particular state
is described by a wavefunction P, which is such that [¥|>dV is the probability of
finding the electron in the infinitesimal volume dV'. In spherical polar coordinates
¥ =Y¥(r,0,$) and dV = r*sin 0 dr d0 d¢. Two such states are described by

IN\V2 71\
e () ()
4n a

3\ 12 _ 1\ pomr/2a0
‘P227<—> sin 6 e (—) re .
8n 2aq ap/3

(a) Show that each ¥; is normalised, ie. the integral over all space [ |¥|*dV is
equal to unity — physically, this means that the electron must be somewhere.

(b) The (so-called) dipole matrix element between the states 1 and 2 is given by
the integral

Py = / Wigrsinfcos$ YL dV,

where ¢ is the charge on the electron. Prove that p, has the value —27qao/3°.

A planar figure is formed from uniform wire and consists of two equal semicircu-
lar arcs, each with its own closing diameter, joined so as to form a letter ‘B’. The
figure is freely suspended from its top left-hand corner. Show that the straight
edge of the figure makes an angle § with the vertical given by tan = (2 + ).
A certain torus has a circular vertical cross-section of radius a centred on a
horizontal circle of radius ¢ (> a).

(a) Find the volume V' and surface area 4 of the torus, and show that they can
be written as

2
V=T =), A=l -1,

where r, and r; are, respectively, the outer and inner radii of the torus.

(b) Show that a vertical circular cylinder of radius ¢, coaxial with the torus,
divides 4 in the ratio

nc+2a : ne—2a.
A thin uniform circular disc has mass M and radius a.

(a) Prove that its moment of inertia about an axis perpendicular to its plane
and passing through its centre is 1 Ma?.

(b) Prove that the moment of inertia of the same disc about a diameter is }‘Maz.
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6.11

6.12

6.13

6.14

6.15

6.16

6.17

This is an example of the general result for planar bodies that the moment of
inertia of the body about an axis perpendicular to the plane is equal to the sum
of the moments of inertia about two perpendicular axes lying in the plane; in an
obvious notation

I;:/rzdm:/(x2+y2)dm:/xzdm+/yzdm:Iy+Ix.

In some applications in mechanics the moment of inertia of a body about a
single point (as opposed to about an axis) is needed. The moment of inertia, I,
about the origin of a uniform solid body of density p is given by the volume
integral

I =/(x2+y2+zz)pdV.
v

Show that the moment of inertia of a right circular cylinder of radius a, length
2b and mass M about its centre is

2 b
M=+ ).
The shape of an axially symmetric hard-boiled egg, of uniform density po, is

given in spherical polar coordinates by r = a(2 — cos ), where 0 is measured
from the axis of symmetry.

(a) Prove that the mass M of the egg is M = %npoa".

X . . . . urag 2
(b) Prove that the egg’s moment of inertia about its axis of symmetry is 155 Ma”.

In spherical polar coordinates r, 0, ¢ the element of volume for a body that
is symmetrical about the polar axis is dV = 2nr?sin 0 dr d0, whilst its element
of surface area is 2nr sin 0[(dr)? + r>(d0)?]'/%. A particular surface is defined by
r = 2acos 0, where a is a constant and 0 < 6 < /2. Find its total surface area
and the volume it encloses, and hence identify the surface.

By expressing both the integrand and the surface element in spherical polar
coordinates, show that the surface integral

2
;
[ s

over the surface x> +y? = z%, 0 < z < 1, has the value 7/./2.
By transforming to cylindrical polar coordinates, evaluate the integral

I :/// In(x> + y?)dx dy dz

over the interior of the conical region x> +)?> <z2,0<z < 1.
Sketch the two families of curves

V=duu—x), =40+ x),

where u and v are parameters.

By transforming to the uv-plane, evaluate the integral of y/(x> + y?)"/? over
the part of the quadrant x > 0, y > 0 that is bounded by the lines x =0, y =0
and the curve y?> = 4a(a — x).

By making two successive simple changes of variables, evaluate

I:///xzdxdydz
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MULTIPLE INTEGRALS

6.18

6.19

6.20

6.21

6.22

6.23

over the ellipsoidal region

Sketch the domain of integration for the integral

1 1/y y3
1= / / < explV (¢ + x )] dxdy
0 Jx=p 2

and characterise its boundaries in terms of new variables u = xy and v = y/x.
Show that the Jacobian for the change from (x,y) to (u,v) is equal to (2v)~!, and
hence evaluate I.

Sketch the part of the region 0 < x, 0 < y < n/2 that is bounded by the curves
x =0,y =0, sinhxcosy =1 and cosh xsiny = 1. By making a suitable change
of variables, evaluate the integral

I= //(sinhzx+cos2 y)sinh 2x sin 2y dx dy

over the bounded subregion.

Define a coordinate system u,v whose origin coincides with that of the usual
x,y system and whose u-axis coincides with the x-axis, whilst the v-axis makes
an angle o with it. By considering the integral I = [ exp(—r?)dA, where r is the
radial distance from the origin, over the area defined by 0 < u < 00, 0 < v < o0,
prove that

00 o0
(/0 /0 exp(—u? — v — 2uv cos o) du dv = Tsina
As stated in section 5.11, the first law of thermodynamics can be expressed as
dU=TdS—Padv.

By calculating and equating 0°U/dY X and 0°U/dX0Y, where X and Y are an
unspecified pair of variables (drawn from P, V, T and S), prove that

8. T) _ o(V.P)

AX.Y) aX,Y)

Using the properties of Jacobians, deduce that

oS, T) 4
ov,P)

The distances of the variable point P, which has coordinates x, y, z, from the fixed
points (0,0,1) and (0,0, —1) are denoted by u and v respectively. New variables
&,n, ¢ are defined by

E=dto. n=1du-o)

and ¢ is the angle between the plane y = 0 and the plane containing the three
points. Prove that the Jacobian d(¢,7, ¢)/d(x,y,z) has the value (£> —#%)~' and

that
(u—v)? u+v _lén
/ / /all space uv P 2 dx dy dz= 3e ’

This is a more difficult question about ‘volumes’ in an increasing number of
dimensions.
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6.6 HINTS AND ANSWERS

6.1

6.3
6.5

6.7
6.9

6.11
6.13
6.15
6.17
6.19

6.21
6.23

(a) Let R be a real positive number and define K,, by

R
K, = / (R — )" dx.
—R
Show, using integration by parts, that K,, satisfies the recurrence relation
2m+ DK, = 2mR*K,,_;.

(b) For integer n, define I, = K,, and J, = K,;1/,. Evaluate Iy and J, directly
and hence prove that

B 22n+] (n !)2R2n+l n(zn + 1) !R2n+2

I, =——— and Jy = .
2n+1)! an 2 (0 + 1))
(¢) A sequence of functions V,(R) is defined by
Vo(R) =1,
R
Vu(R) =/ Vo (\/RZ —x2> dx, n>1.
—R
Prove by induction that
TE”RZ“ nn22n+1 n !R2n+]
VZn(R) = V2n+l(R) = T

n! ’ 2n+1)!

(d) For interest,

(i) show that Vy,45(1) < Va,(1) and Vy,pq(1) < Va,—1(1) for all n > 3;

(if) hence, by explicitly writing out Vi(R) for 1 < k < 8 (say), show that the
‘volume’ of the totally symmetric solid of unit radius is a maximum in
five dimensions.

6.6 Hints and answers

For integration order z, y, x, the limits are (0,a — x), (—+/4ax, \/4ax) and (0, a).
For integration order y, x, z, the limits are (—+/4ax, ./ 4ax), (0,a — z) and (0, a).

V =16a’/15.

1/360.

(a) Evaluate [2b[1 — (x/a)’]'/? dx by setting x = acos ¢;

(b) dV =7 x a[l — (z/¢)*]"/?> x b[1 — (z/c)*]'/? dz.

Write sin® 0 as (1 — cos? 0) sin @ when integrating |¥,|.

(a) V = 2nc x na® and A = 2na x 2nc. Setting r, = ¢ +a and r; = ¢ —a gives the
stated results. (b) Show that the centre of gravity of either half is 2a/n from the
cylinder.

Transform to cylindrical polar coordinates.

4na’; 4na’/3; a sphere.

The volume element is pd¢ dpdz. The integrand for the final z-integration is
given by 2n[(z*Inz) — (z2/2)]; I = —57/9.

Set & = x/a,n = y/b, { = z/c to map the ellipsoid onto the unit sphere, and then
change from (&,#,() coordinates to spherical polar coordinates; I = 4na’bc/15.
Set u = sinhxcosy and v = coshxsiny; J,,,, = (sinh’x + cos?y)~! and the
integrand reduces to 4uv over the region 0 <u<1,0<v<1;I =1

Terms such as T92S/dY 0X cancel in pairs. Use equations (6.17) and (6.16).

(c) Show that the two expressions mutually support the integration formula given
for computing a volume in the next higher dimension.

(d)(ii) 2, m, 4n/3, 7%/2, 872/15, n3/6, 1673 /105, n*/24.
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7

Vector algebra

This chapter introduces space vectors and their manipulation. Firstly we deal with
the description and algebra of vectors, then we consider how vectors may be used
to describe lines and planes and finally we look at the practical use of vectors in
finding distances. Much use of vectors will be made in subsequent chapters; this
chapter gives only some basic rules.

7.1 Scalars and vectors

The simplest kind of physical quantity is one that can be completely specified by
its magnitude, a single number, together with the units in which it is measured.
Such a quantity is called a scalar and examples include temperature, time and
density.

A vector is a quantity that requires both a magnitude (> 0) and a direction in
space to specify it completely; we may think of it as an arrow in space. A familiar
example is force, which has a magnitude (strength) measured in newtons and a
direction of application. The large number of vectors that are used to describe
the physical world include velocity, displacement, momentum and electric field.
Vectors are also used to describe quantities such as angular momentum and
surface elements (a surface element has an area and a direction defined by the
normal to its tangent plane); in such cases their definitions may seem somewhat
arbitrary (though in fact they are standard) and not as physically intuitive as for
vectors such as force. A vector is denoted by bold type, the convention of this
book, or by underlining, the latter being much used in handwritten work.

This chapter considers basic vector algebra and illustrates just how powerful
vector analysis can be. All the techniques are presented for three-dimensional
space but most can be readily extended to more dimensions.

Throughout the book we will represent a vector in diagrams as a line together
with an arrowhead. We will make no distinction between an arrowhead at the
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7.2 ADDITION AND SUBTRACTION OF VECTORS

Figure 7.1 Addition of two vectors showing the commutation relation. We
make no distinction between an arrowhead at the end of the line and one
along the line’s length, but rather use that which gives the clearer diagram.

end of the line and one along the line’s length but, rather, use that which gives the
clearer diagram. Furthermore, even though we are considering three-dimensional
vectors, we have to draw them in the plane of the paper. It should not be assumed
that vectors drawn thus are coplanar, unless this is explicitly stated.

7.2 Addition and subtraction of vectors

The resultant or vector sum of two displacement vectors is the displacement vector
that results from performing first one and then the other displacement, as shown
in figure 7.1; this process is known as vector addition. However, the principle
of addition has physical meaning for vector quantities other than displacements;
for example, if two forces act on the same body then the resultant force acting
on the body is the vector sum of the two. The addition of vectors only makes
physical sense if they are of a like kind, for example if they are both forces
acting in three dimensions. It may be seen from figure 7.1 that vector addition is
commutative, i.e.

a+b=b+a. (7.1)

The generalisation of this procedure to the addition of three (or more) vectors is
clear and leads to the associativity property of addition (see figure 7.2), e.g.

at+(b+c)=(@+b)+ec (7.2)

Thus, it is immaterial in what order any number of vectors are added.
The subtraction of two vectors is very similar to their addition (see figure 7.3),
that is,

a—b=a+(-b)

where —b is a vector of equal magnitude but exactly opposite direction to vector b.
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AN

a+(b+c)

Figure 7.3 Subtraction of two vectors.

The subtraction of two equal vectors yields the zero vector, 0, which has zero
magnitude and no associated direction.

7.3 Multiplication by a scalar

Multiplication of a vector by a scalar (not to be confused with the ‘scalar
product’, to be discussed in subsection 7.6.1) gives a vector in the same direction
as the original but of a proportional magnitude. This can be seen in figure 7.4.
The scalar may be positive, negative or zero. It can also be complex in some
applications. Clearly, when the scalar is negative we obtain a vector pointing
in the opposite direction to the original vector. Multiplication by a scalar is
associative, commutative and distributive over addition. These properties may be
summarised for arbitrary vectors a and b and arbitrary scalars A and u by

(Awa = Aua) = p(ia), (7.3)
AMa+b)=Ja+ ib, (7.4)
(A + p)a = Ja + pa. (7.5)

214



7.3 MULTIPLICATION BY A SCALAR

Figure 7.4 Scalar multiplication of a vector (for 2 > 1).

]

Figure 7.5 An illustration of the ratio theorem. The point P divides the line
segment AB in the ratio 4 : p.

Having defined the operations of addition, subtraction and multiplication by a
scalar, we can now use vectors to solve simple problems in geometry.

»A point P divides a line segment AB in the ratio A : p (see figure 7.5). If the position
vectors of the points A and B are a and b, respectively, find the position vector of the
point P.

As is conventional for vector geometry problems, we denote the vector from the point A
to the point B by AB. If the position vectors of the points 4 and B, relative to some origin
0, are a and b, it should be clear that AB=b —a.

Now, from figure 7.5 we see that one possible way of reaching the point P from O is
first to go from O to A and to go along the line AB for a distance equal to the the fraction
/(2 4+ p) of its total length. We may express this in terms of vectors as

AB

OP=p=a
P +i+,u

=a+

praiat)

A A
=(l———)a+-—>b
( ),+u> +).+u

u

)
=Tt T (7.6)

which expresses the position vector of the point P in terms of those of A and B. We would,
of course, obtain the same result by considering the path from O to B and then to P. «

215



VECTOR ALGEBRA

0

Figure 7.6 The centroid of a triangle. The triangle is defined by the points A4,
B and C that have position vectors a, b and ¢. The broken lines CD, BE, AF
connect the vertices of the triangle to the mid-points of the opposite sides;
these lines intersect at the centroid G of the triangle.

Result (7.6) is a version of the ratio theorem and we may use it in solving more
complicated problems.

» The vertices of triangle ABC have position vectors a, b and ¢ relative to some origin O
(see figure 7.6). Find the position vector of the centroid G of the triangle.

From figure 7.6, the points D and E bisect the lines AB and AC respectively. Thus from
the ratio theorem (7.6), with 2 = u = 1/2, the position vectors of D and E relative to the
origin are

_la 1
d = 3ja+3b,
— 1 L
e=ja+ic

Using the ratio theorem again, we may write the position vector of a general point on the
line CD that divides the line in the ratio 4 : (1 — 1) as

r=(1—2)c+d,
=(1—2)c+iia+b), (7.7)

where we have expressed d in terms of a and b. Similarly, the position vector of a general
point on the line BE can be expressed as

r=(1— b+ ue,
=(1—pb+ fu@+ec). (7.8)
Thus, at the intersection of the lines CD and BE we require, from (7.7), (7.8),
(1—2)ec+ %/l(a +b)=(1—pb+ %u(a +c).
By equating the coefficents of the vectors a, b, ¢ we find

A=U, %i=1—,u, 1—/L=%u‘
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7.4 BASIS VECTORS AND COMPONENTS

These equations are consistent and have the solution 4 = p = 2/3. Substituting these
values into either (7.7) or (7.8) we find that the position vector of the centroid G is given
by

g=1(a+b+c). «

7.4 Basis vectors and components

Given any three different vectors e, e; and e;, which do not all lie in a plane,
it is possible, in a three-dimensional space, to write any other vector in terms of
scalar multiples of them:

a = ae; + are, + azes. (7.9)

The three vectors eq, e; and e3 are said to form a basis (for the three-dimensional
space); the scalars a;, a; and a3, which may be positive, negative or zero, are
called the components of the vector a with respect to this basis. We say that the
vector has been resolved into components.

Most often we shall use basis vectors that are mutually perpendicular, for ease
of manipulation, though this is not necessary. In general, a basis set must

(1) have as many basis vectors as the number of dimensions (in more formal
language, the basis vectors must span the space) and

(i1) be such that no basis vector may be described as a sum of the others, or,
more formally, the basis vectors must be linearly independent. Putting this
mathematically, in N dimensions, we require

cie; +ces+ - +cyey # 0,
for any set of coefficients ¢y, ¢s,...,cn except ¢y = ¢y =+ =cy =0.

In this chapter we will only consider vectors in three dimensions; higher dimen-
sionality can be achieved by simple extension.

If we wish to label points in space using a Cartesian coordinate system (X, y, z),
we may introduce the unit vectors i, j and k, which point along the positive x-,
y- and z- axes respectively. A vector a may then be written as a sum of three
vectors, each parallel to a different coordinate axis:

a = ad+ a,j+ ak. (7.10)

A vector in three-dimensional space thus requires three components to describe
fully both its direction and its magnitude. A displacement in space may be
thought of as the sum of displacements along the x-, y- and z- directions (see
figure 7.7). For brevity, the components of a vector a with respect to a particular
coordinate system are sometimes written in the form (ay,ay,a.). Note that the
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Figure 7.7 A Cartesian basis set. The vector a is the sum of a,i, a,j and a.k.

basis vectors i, j and k may themselves be represented by (1,0,0), (0,1,0) and
(0,0, 1) respectively.

We can consider the addition and subtraction of vectors in terms of their
components. The sum of two vectors a and b is found by simply adding their
components, i.e.

a+b=ad+aj+ak+bi+b,j+ bk
= (ax + by)i+ (ay + by)j + (a: + b )k, (7.11)

and their difference by subtracting them,
a—b=aid+ayj+ak— (b +byj+b:k)
= (ax — by)i+ (ay — by)j + (a: — b.)k. (7.12)

» Two particles have velocities vi = i+ 3j + 6k and v, = i — 2Kk, respectively. Find the
velocity u of the second particle relative to the first.

The required relative velocity is given by
u=v,—vi=(1—1i+(0—=3)j+(-2—-6)k
= —3j—8k. «

7.5 Magnitude of a vector

The magnitude of the vector a is denoted by |a| or a. In terms of its components
in three-dimensional Cartesian coordinates, the magnitude of a is given by

a=la|=,/d +a+ai (7.13)

Hence, the magnitude of a vector is a measure of its length. Such an analogy is
useful for displacement vectors but magnitude is better described, for example, by
‘strength’ for vectors such as force or by ‘speed’ for velocity vectors. For instance,
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o

bcos 0

Figure 7.8 The projection of b onto the direction of a is bcos . The scalar
product of a and b is abcos 0.

in the previous example, the speed of the second particle relative to the first is

given by
u=u = /(=32 + (=82 = J73.

A vector whose magnitude equals unity is called a unit vector. The unit vector
in the direction a is usually notated 4 and may be evaluated as

. a
A= —. (7.14)

|a]
The unit vector is a useful concept because a vector written as Aa then has mag-
nitude A and direction 4. Thus magnitude and direction are explicitly separated.

7.6 Multiplication of vectors

We have already considered multiplying a vector by a scalar. Now we consider
the concept of multiplying one vector by another vector. It is not immediately
obvious what the product of two vectors represents and in fact two products
are commonly defined, the scalar product and the vector product. As their names
imply, the scalar product of two vectors is just a number, whereas the vector
product is itself a vector. Although neither the scalar nor the vector product
is what we might normally think of as a product, their use is widespread and
numerous examples will be described elsewhere in this book.

7.6.1 Scalar product

The scalar product (or dot product) of two vectors a and b is denoted by a - b
and is given by

a-b=a|bjcosd, 0<O<m, (7.15)

where 0 is the angle between the two vectors, placed ‘tail to tail’ or ‘head to head’.
Thus, the value of the scalar product a - b equals the magnitude of a multiplied
by the projection of b onto a (see figure 7.8).
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From (7.15) we see that the scalar product has the particularly useful property
that

a-b=0 (7.16)

is a necessary and sufficient condition for a to be perpendicular to b (unless either
of them is zero). It should be noted in particular that the Cartesian basis vectors
i, j and k, being mutually orthogonal unit vectors, satisfy the equations

iizjj=k-k=1, (1.17)

Examples of scalar products arise naturally throughout physics and in partic-
ular in connection with energy. Perhaps the simplest is the work done F - r in
moving the point of application of a constant force F through a displacement r;
notice that, as expected, if the displacement is perpendicular to the direction of
the force then F-r = 0 and no work is done. A second simple example is afforded
by the potential energy —m - B of a magnetic dipole, represented in strength and
orientation by a vector m, placed in an external magnetic field B.

As the name implies, the scalar product has a magnitude but no direction. The
scalar product is commutative and distributive over addition:

a-b=b-a (7.19)
a-(b+c)=a-b+a-c (7.20)

» Four non-coplanar points A, B, C,D are positioned such that the line AD is perpendicular
to BC and BD is perpendicular to AC. Show that CD is perpendicular to AB.

Denote the four position vectors by a, b, ¢, d. As none of the three pairs of lines actually
intersect, it is difficult to indicate their orthogonality in the diagram we would normally
draw. However, the orthogonality can be expressed in vector form and we start by noting
that, since AD L BC, it follows from (7.16) that

(d—a)-(c—b)=0.
Similarly, since BD 1 AC,
(d—b)-(c—a)=0.
Combining these two equations we find
(d—a)-(c—b)=(d—b)-(c—a),
which, on mutliplying out the parentheses, gives
d-c—a-c—d-b+a-b=d-c—b-c—d-a+b-a.
Cancelling terms that appear on both sides and rearranging yields
d-b—d-a—c-b+c-a=0,
which simplifies to give
(d—c)-(b—a)=0.
From (7.16), we see that this implies that CD is perpendicular to AB. <
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7.6 MULTIPLICATION OF VECTORS

If we introduce a set of basis vectors that are mutually orthogonal, such as i, j,
k, we can write the components of a vector a, with respect to that basis, in terms
of the scalar product of a with each of the basis vectors, i.e. a, = a-i, a, = a-j and
a. = a-k. In terms of the components a,, a, and a. the scalar product is given by

a-b=(ad+ayj+ak)- (bi+byj+b.k)=ab.+ayb,+ab., (7.21)

where the cross terms such as ayi - byj are zero because the basis vectors are
mutually perpendicular; see equation (7.18). It should be clear from (7.15) that
the value of a - b has a geometrical definition and that this value is independent
of the actual basis vectors used.

| » Find the angle between the vectors a =i+ 2j+ 3k and b = 2i + 3j + 4k. |

From (7.15) the cosine of the angle 6 between a and b is given by

a-b

allb]

From (7.21) the scalar product a - b has the value
a-b=1x2+2x34+3x4=20,

and from (7.13) the lengths of the vectors are

laj =12 4+22+32=/14 and  |b|=+/22432+4 =29

cosf =

Thus,

cosf) = L ~ 0.9926 = 0=0.12 rad. «

V1429
We can see from the expressions (7.15) and (7.21) for the scalar product that if
0 is the angle between a and b then

_ Oy bx ay by a; bz
COSO_;?+7? =7

where ay/a, a,/a and a./a are called the direction cosines of a, since they give the
cosine of the angle made by a with each of the basis vectors. Similarly b./b, b, /b
and b, /b are the direction cosines of b.

If we take the scalar product of any vector a with itself then clearly 0 = 0 and
from (7.15) we have

a-a=|a’

Thus the magnitude of a can be written in a coordinate-independent form as

l]a] = \/a-a.

Finally, we note that the scalar product may be extended to vectors with
complex components if it is redefined as

a-b=ab,+ a;by +a.b,,

where the asterisk represents the operation of complex conjugation. To accom-
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a

Figure 7.9 The vector product. The vectors a, b and a xb form a right-handed
set.

modate this extension the commutation property (7.19) must be modified to
read

a-b=(b-a)". (7.22)

In particular it should be noted that (la)-b = A"a - b, whereas a - (1b) = Ja - b.
However, the magnitude of a complex vector is still given by |a] = ,/a - a, since
a-a is always real.

7.6.2 Vector product

The vector product (or cross product) of two vectors a and b is denoted by a x b
and is defined to be a vector of magnitude |a||b|sin 0 in a direction perpendicular
to both a and b;

|a x b| = |a]|b| sin 6.

The direction is found by ‘rotating’ a into b through the smallest possible angle.
The sense of rotation is that of a right-handed screw that moves forward in the
direction a x b (see figure 7.9). Again, 0 is the angle between the two vectors
placed ‘tail to tail’ or ‘head to head’. With this definition a, b and a x b form a
right-handed set. A more directly usable description of the relative directions in
a vector product is provided by a right hand whose first two fingers and thumb
are held to be as nearly mutually perpendicular as possible. If the first finger is
pointed in the direction of the first vector and the second finger in the direction
of the second vector, then the thumb gives the direction of the vector product.

The vector product is distributive over addition, but anticommutative and non-
associative:

(a+b)xe=(axc)+(bxc), (7.23)
b xa=—(axbh), (7.24)
(axb)xec#ax(bxc). (7.25)
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Figure 7.10 The moment of the force F about O is r X F. The cross represents
the direction of r x F, which is perpendicularly into the plane of the paper.

From its definition, we see that the vector product has the very useful property
that if a x b = 0 then a is parallel or antiparallel to b (unless either of them is
zero). We also note that

axa=0. (7.26)

| »Show that if a =b + Ac, for some scalar J, then a X ¢ =b X c. |

From (7.23) we have
axc=(b+ic)xe=bxc+icxe

However, from (7.26), ¢ x ¢ = 0 and so
axc=bxec (7.27)
We note in passing that the fact that (7.27) is satisfied does not imply that a = b. «

An example of the use of the vector product is that of finding the area, 4, of
a parallelogram with sides a and b, using the formula

A=|axb|. (7.28)

Another example is afforded by considering a force F acting through a point R,
whose vector position relative to the origin O is r (see figure 7.10). Its moment
or torque about O is the strength of the force times the perpendicular distance
OP, which numerically is just Frsin6, i.e. the magnitude of r x F. Furthermore,
the sense of the moment is clockwise about an axis through O that points
perpendicularly into the plane of the paper (the axis is represented by a cross
in the figure). Thus the moment is completely represented by the vector r x F,
in both magnitude and spatial sense. It should be noted that the same vector
product is obtained wherever the point R is chosen, so long as it lies on the line
of action of F.

Similarly, if a solid body is rotating about some axis that passes through the
origin, with an angular velocity w then we can describe this rotation by a vector
o that has magnitude w and points along the axis of rotation. The direction of @
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is the forward direction of a right-handed screw rotating in the same sense as the
body. The velocity of any point in the body with position vector r is then given
byv=w xr.

Since the basis vectors i, j, k are mutually perpendicular unit vectors, forming
a right-handed set, their vector products are easily seen to be

ixi=jxj=kxk=0, (7.29)
ixj=—jxi=k, (7.30)
jxk=—-kxj=i, (7.31)
kxi=—ixk=j (7.32)

Using these relations, it is straightforward to show that the vector product of two
general vectors a and b is given in terms of their components with respect to the
basis set i, j, k, by

axb=(ab.—a:by)i+ (a.by — a:b.)j+ (ab, — a,b,)k. (7.33)

For the reader who is familiar with determinants (see chapter 8), we record that
this can also be written as

i j k
axb=|a a, a:
by by, b

That the cross product a x b is perpendicular to both a and b can be verified
in component form by forming its dot products with each of the two vectors and
showing that it is zero in both cases.

» Find the area A of the parallelogram with sides a =i+ 2j+ 3k and b = 4i + 5j + 6k.

The vector product a x b is given in component form by

axb=2x6-3x5i+B3x4—-1x6)j+ (1l x5—-2x4)k
= —3i+6j — 3k.

Thus the area of the parallelogram is

A=laxhl =/(=32+6 + (=372 =54 «

7.6.3 Scalar triple product

Now that we have defined the scalar and vector products, we can extend our
discussion to define products of three vectors. Again, there are two possibilities,
the scalar triple product and the vector triple product.
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Figure 7.11 The scalar triple product gives the volume of a parallelepiped.

The scalar triple product is denoted by
[a,b,c] =a-(bxc)

and, as its name suggests, it is just a number. It is most simply interpreted as the
volume of a parallelepiped whose edges are given by a, b and ¢ (see figure 7.11).
The vector v =a x b is perpendicular to the base of the solid and has magnitude
v = absin0, ie. the area of the base. Further, v - ¢ = vccos ¢. Thus, since ¢ cos ¢
= OP is the vertical height of the parallelepiped, it is clear that (a X b) - ¢ = area
of the base x perpendicular height = volume. It follows that, if the vectors a, b
and ¢ are coplanar, a- (b x ¢) = 0.

Expressed in terms of the components of each vector with respect to the
Cartesian basis set i, j, k the scalar triple product is

a-(bxe)= ax(bycz - bzcy) + ay(bzcx —byc:) + az(bxcy - bycx),
(7.34)

which can also be written as a determinant:

ax a, a.
a-(bxe)=| by b, b
Cx €y C:

By writing the vectors in component form, it can be shown that
a-(bxc)=(axb)-c

so that the dot and cross symbols can be interchanged without changing the result.
More generally, the scalar triple product is unchanged under cyclic permutation
of the vectors a,b,c. Other permutations simply give the negative of the original
scalar triple product. These results can be summarised by

[a,b,¢c] = [b,c,a] = [c,a,b] = —[a,¢c,b] = —[b,a,c] = —[¢,b,a]. (7.35)
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» Find the volume V of the parallelepiped with sides a = i+ 2j+ 3k, b = 4i + 5j + 6k and
¢ = 7i + 8 + 10k.

We have already found that a x b = —3i + 6j — 3k, in subsection 7.6.2. Hence the volume
of the parallelepiped is given by

V=la-(bxe)=]axbh)-¢|
= |(—3i+ 6j — 3k) - (7i + 8j + 10k)|
=1(=3)(7) + (6)(8) + (—3)(10)| = 3. «

Another useful formula involving both the scalar and vector products is La-
grange’s identity (see exercise 7.9), i.e.

(axb)-(cxd)=(a-c)b-d)—(a-d)b-c). (7.36)

7.6.4 Vector triple product

By the vector triple product of three vectors a, b, ¢ we mean the vector a x (b x ¢).
Clearly, a x (b X ¢) is perpendicular to a and lies in the plane of b and ¢ and so
can be expressed in terms of them (see (7.37) below). We note, from (7.25), that
the vector triple product is not associative, i.e. a X (b X ¢) # (a X b) x c.

Two useful formulae involving the vector triple product are

ax(bxe)=(a-c)b—(a-b)c, (7.37)
(axb)xc=(a-c)b—(b-ca, (7.38)

which may be derived by writing each vector in component form (see exercise 7.8).
It can also be shown that for any three vectors a, b, c,

ax(bxc)+bx(cxa)+cx(axhb)=0.

7.7 Equations of lines, planes and spheres

Now that we have described the basic algebra of vectors, we can apply the results
to a variety of problems, the first of which is to find the equation of a line in
vector form.

7.7.1 Equation of a line

Consider the line passing through the fixed point A with position vector a and
having a direction b (see figure 7.12). It is clear that the position vector r of a
general point R on the line can be written as

r=a+/b, (7.39)
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Figure 7.12 The equation of a line. The vector b is in the direction AR and
/b is the vector from A4 to R.

since R can be reached by starting from O, going along the translation vector
a to the point 4 on the line and then adding some multiple Ab of the vector b.
Different values of / give different points R on the line.

Taking the components of (7.39), we see that the equation of the line can also
be written in the form

X ;xax =Y ;yay = ;Zaz = constant. (7.40)

Taking the vector product of (7.39) with b and remembering that b x b = 0 gives
an alternative equation for the line

(r—a)xb=0.

We may also find the equation of the line that passes through two fixed points
A and C with position vectors a and c¢. Since AC is given by ¢ — a, the position
vector of a general point on the line is

r=a+ A(c—a).

7.7.2 Equation of a plane

The equation of a plane through a point A with position vector a and perpendic-
ular to a unit position vector fi (see figure 7.13) is

(r—a) f=0. (7.41)

This follows since the vector joining 4 to a general point R with position vector
r is r —a; r will lie in the plane if this vector is perpendicular to the normal to
the plane. Rewriting (7.41) as r - fi = a - fi, we see that the equation of the plane
may also be expressed in the form r - fi = d, or in component form as

Ix+my+nz=d, (7.42)
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Figure 7.13 The equation of the plane is (r—a)-n = 0.

where the unit normal to the plane is i = li +mj+ nk and d = a - i is the
perpendicular distance of the plane from the origin.
The equation of a plane containing points a, b and ¢ is

r=a+ Ab—a)+ u(c—a).

This is apparent because starting from the point a in the plane, all other points
may be reached by moving a distance along each of two (non-parallel) directions
in the plane. Two such directions are given by b —a and ¢ — a. It can be shown
that the equation of this plane may also be written in the more symmetrical form

r=oaa+ fib+vyc,

where o+ f +7y = 1.

» Find the direction of the line of intersection of the two planes x + 3y —z = 5 and
2x — 2y +4z =3.

The two planes have normal vectors n; = i + 3j — k and n, = 2i — 2j + 4k. It is clear
that these are not parallel vectors and so the planes must intersect along some line. The

direction p of this line must be parallel to both planes and hence perpendicular to both
normals. Therefore

Pp=n Xm

=[3)(4) = (=2)(=D]li + [(=1)(2) — (DA + [(1)(=2) = B)(2)] k
= 10i — 6j — 8k. «

7.7.3 Equation of a sphere

Clearly, the defining property of a sphere is that all points on it are equidistant
from a fixed point in space and that the common distance is equal to the radius
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of the sphere. This is easily expressed in vector notation as
r—c¢f=@r—c) (r—c)=d°, (7.43)

where c¢ is the position vector of the centre of the sphere and a is its radius.

» Find the radius p of the circle that is the intersection of the plane fi-r = p and the sphere
of radius a centred on the point with position vector c.

The equation of the sphere is

r—c¢f* =d% (7.44)
and that of the circle of intersection is

Ir—b|* = p%, (7.45)

where r is restricted to lie in the plane and b is the position of the circle’s centre.

As b lies on the plane whose normal is fi, the vector b — ¢ must be parallel to i, i.e.
b — ¢ = /f for some A Further, by Pythagoras, we must have p> + |b —¢> = a*. Thus
P =a—ph

Writing b = ¢ + y/a? — p?ii and substituting in (7.45) gives

rt=or- (C+ \/rpzﬁ) + 42 )@ —p2+a—pt = p,
whilst, on expansion, (7.44) becomes
P =2r-c+c=d.
Subtracting these last two equations, using fi - r = p and simplifying yields
p—c b= Ja =L

On rearrangement, this gives p as y/a?> — (p — ¢ - )2, which places obvious geometrical
constraints on the values a,¢,it and p can take if a real intersection between the sphere
and the plane is to occur. «

7.8 Using vectors to find distances

This section deals with the practical application of vectors to finding distances.
Some of these problems are extremely cumbersome in component form, but they
all reduce to neat solutions when general vectors, with no explicit basis set,
are used. These examples show the power of vectors in simplifying geometrical
problems.

7.8.1 Distance from a point to a line

Figure 7.14 shows a line having direction b that passes through a point 4 whose
position vector is a. To find the minimum distance d of the line from a point P
whose position vector is p, we must solve the right-angled triangle shown. We see
that d = |p —a| sin 0; so, from the definition of the vector product, it follows that

d=|(p—a)x b
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(0]

Figure 7.14 The minimum distance from a point to a line.

» Find the minimum distance from the point P with coordinates (1,2,1) to the liner = a+/b,
where a=1i+j+k and b= 2i—j+ 3k.

Comparison with (7.39) shows that the line passes through the point (1,1,1) and has
direction 2i — j + 3k. The unit vector in this direction is

1

b= 2i—j + 3k).
\/ﬁ( i+ 3k)
The position vector of P is p =i+ 2j+ k and we find
« 1
—a)xb=—[jx(2i—3j+3k
(p—a) \/H[J ( j + 3k)]
1
= —(3i—2k).
T4( )

Thus the minimum distance from the line to the point P is d = /13/14. <

7.8.2 Distance from a point to a plane

The minimum distance d from a point P whose position vector is p to the plane
defined by (r —a) - i = 0 may be deduced by finding any vector from P to the
plane and then determining its component in the normal direction. This is shown
in figure 7.15. Consider the vector a — p, which is a particular vector from P to
the plane. Its component normal to the plane, and hence its distance from the
plane, is given by

d=(a—p)-h, (7.46)
where the sign of d depends on which side of the plane P is situated.
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=>>x“/7
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o

Figure 7.15 The minimum distance d from a point to a plane.

» Find the distance from the point P with coordinates (1,2, 3) to the plane that contains the
points A, B and C having coordinates (0, 1,0), (2,3,1) and (5,7,2).

Let us denote the position vectors of the points 4, B, C by a, b, ¢. Two vectors in the
plane are

b—a=2i+2j+k and ¢ —a=>5i+6j+ 2k,
and hence a vector normal to the plane is
n = (2i + 2j + k) x (5i + 6j + 2k) = —2i + j + 2k,
and its unit normal is
ii= % = L(<2i+j+2k).

Denoting the position vector of P by p, the minimum distance from the plane to P is
given by

d=(a—p)-n

=(—i—j—3Kk)- $(-2i+j+2k)

1 - _5
32_ 3

2 _
3

If we take P to be the origin O, then we find d = %, i.e. a positive quantity. It follows from
this that the original point P with coordinates (1,2, 3), for which d was negative, is on the
opposite side of the plane from the origin. <

7.8.3 Distance from a line to a line

Consider two lines in the directions a and b, as shown in figure 7.16. Since a x b
is by definition perpendicular to both a and b, the unit vector normal to both

these lines is
axbh

|]a x b|’

A
n=
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o

Figure 7.16 The minimum distance from one line to another.

If p and q are the position vectors of any two points P and Q on different lines
then the vector connecting them is p — q. Thus, the minimum distance d between
the lines is this vector’s component along the unit normal, i.e.

d=1|(p—q)-n|.

» A line is inclined at equal angles to the x-, y- and z-axes and passes through the origin.
Another line passes through the points (1,2,4) and (0,0,1). Find the minimum distance
between the two lines.

The first line is given by
r = i+j+k),
and the second by
r; =k + u(i + 2j + 3k).
Hence a vector normal to both lines is
n=>{+j+k) x(@i+2j+3k)=1i—-2j+k,
and the unit normal is

1
n=—(@{i—2j+k).
ﬁ(J )
A vector between the two lines is, for example, the one connecting the points (0,0, 0)
and (0,0, 1), which is simply k. Thus it follows that the minimum distance between the
two lines is

1
d=—k- -(i—2j+k) = <
ﬁ\( j+ k)l

s

7.8.4 Distance from a line to a plane

Let us consider the line r = a 4+ Zb. This line will intersect any plane to which it
is not parallel. Thus, if a plane has a normal @i then the minimum distance from
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the line to the plane is zero unless
b-i=0,
in which case the distance, d, will be
d=l@—r)-nl|,

where r is any point in the plane.

»A line is given by r = a + /b, where a = i+ 2j + 3k and b = 4i + 5j + 6k. Find the
coordinates of the point P at which the line intersects the plane

x+2y+3z=6.

A vector normal to the plane is
n=i+2j+ 3k,

from which we find that b - n 0. Thus the line does indeed intersect the plane. To find
the point of intersection we merely substitute the x-, y- and z- values of a general point
on the line into the equation of the plane, obtaining

1+4242Q+5)+33+61)=6 = 14+321=6.

This gives A = —1, which we may substitute into the equation for the line to obtain

T
x=1-1(4)=0,y=2—1(5)=2 and z = 3— 1(6) = 3. Thus the point of intersection is

. 4 2
0,%,5). «

7.9 Reciprocal vectors

The final section of this chapter introduces the concept of reciprocal vectors,
which have particular uses in crystallography.
The two sets of vectors a, b, ¢ and a’, b, ¢’ are called reciprocal sets if

a-a’=b-b=c-¢=1 (7.47)
and
a’-b=a"-c=b-a=b.c=c-a=c-b=0. (7.48)

It can be verified (see exercise 7.19) that the reciprocal vectors of a, b and ¢ are
given by

, bxc

; cXa

b= b xe (7.50)
,_axbh

P (7.51)

where a - (b x ¢) # 0. In other words, reciprocal vectors only exist if a, b and ¢ are
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not coplanar. Moreover, if a, b and ¢ are mutually orthogonal unit vectors then
a’=a, b =b and ¢ =c, so that the two systems of vectors are identical.

» Construct the reciprocal vectors of a=2i,b=j+k c=i+k

First we evaluate the triple scalar product:
a-(bxec)=2i-[(j+k)x(@{i+k)
=2-(i+j—k) = 2
Now we find the reciprocal vectors:
A =1+kx({i+k = Ji+j—k),
b =1G+k x2i =j
=12 x(j+k = —j+k
It is easily verified that these reciprocal vectors satisfy their defining properties (7.47),

(7.43). <

We may also use the concept of reciprocal vectors to define the components of a
vector a with respect to basis vectors ey, e,, e; that are not mutually orthogonal.
If the basis vectors are of unit length and mutually orthogonal, such as the
Cartesian basis vectors i, j, k, then (see the text preceeding (7.21)) the vector a
can be written in the form

a=(a-ii+(a-jj+(a-kk

If the basis is not orthonormal, however, then this is no longer true. Nevertheless,
we may write the components of a with respect to a non-orthonormal basis
ej, e, e3 in terms of its reciprocal basis vectors e/, €}, €5, which are defined as in
(7.49)—(7.51). If we let

a=ae; + are; + ases,
then the scalar product a - €] is given by
a~e’1 = de; 'e/l +a2e2~e/1 + aze3 'C/l =day,
where we have used the relations (7.48). Similarly, a, = a-e} and a3 = a-e}; so now

a=(a-e))e +(a-e))er+ (a-e)e;s. (7.52)

7.10 Exercises
7.1 Which of the following statements about general vectors a, b and ¢ are true?
(a) c-(axb)y=(bxa)-c.
(b) ax(bxe)=(axh)xec
(c) ax(bxec)=(a-c)b—(a-b).
(d) d = Aa+ ub implies (a x b) -d =0.
() axec=bxcimpliesc-a—c-b=cla—b|.
(f) (axb)x(cxb)y=>bb-(cxa)].

234



7.10 EXERCISES

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

A unit cell of diamond is a cube of side 4, with carbon atoms at each corner, at
the centre of each face and, in addition, at positions displaced by 1A(i + j + k)
from each of those already mentioned; i, j, k are unit vectors along the cube axes.
One corner of the cube is taken as the origin of coordinates. What are the vectors
joining the atom at %A(i + j+ k) to its four nearest neighbours? Determine the
angle between the carbon bonds in diamond.

Identify the following surfaces:

(@) [rl=k;(b)r-u=I;(c)r-u=mr| for -1 <m < +1;
(d) [r—(r-uu|=n

Here k, I, m and n are fixed scalars and u is a fixed unit vector.

Find the angle between the position vectors to the points (3,—4,0) and (—2,1,0)
and find the direction cosines of a vector perpendicular to both.

A,B,C and D are the four corners, in order, of one face of a cube of side 2
units. The opposite face has corners E,F,G and H, with AE,BF,CG and DH
as parallel edges of the cube. The centre O of the cube is taken as the origin
and the x-, y- and z-axes are parallel to AD, AE and AB, respectively. Find the
following:

(a) the angle between the face diagonal AF and the body diagonal AG;

(b) the equation of the plane through B that is parallel to the plane CGE;

(c) the perpendicular distance from the centre J of the face BCGF to the plane
0CG;

(d) the volume of the tetrahedron JOCG.

Use vector methods to prove that the lines joining the mid-points of the opposite
edges of a tetrahedron OABC meet at a point and that this point bisects each of
the lines.

The edges OP, OQ and OR of a tetrahedron OPQR are vectors p, q and r,
respectively, where p = 2i + 4j, ¢ = 2i — j + 3k and r = 4i — 2j + 5k. Show that
OP is perpendicular to the plane containing OQR. Express the volume of the
tetrahedron in terms of p, q and r and hence calculate the volume.

Prove, by writing it out in component form, that

(axb)yxec=(a-c)b—(b-c)a,

and deduce the result, stated in equation (7.25), that the operation of forming
the vector product is non-associative.
Prove Lagrange’s identity, i.e.

(axb)-(exd)y=(a-c)(b-d)—(a-d)(b-c).
For four arbitrary vectors a, b, ¢ and d, evaluate
(axb)x(cxd)
in two different ways and so prove that
a[b,c,d] —b[c,d,a] + c[d,a,b] —d[a,b,c] = 0.

Show that this reduces to the normal Cartesian representation of the vector d,
ie. did+d,j+d.k, if a,b and c are taken as i, j and k, the Cartesian base vectors.
Show that the points (1,0, 1), (1,1,0) and (1,—3,4) lic on a straight line. Give the
equation of the line in the form

r=a+/b.
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7.12

7.13

7.14

7.15

7.16

7.17

7.18

The plane P; contains the points A, B and C, which have position vectors
a= —3i+2j, b= "7i+2j and ¢ = 2i + 3j + 2k, respectively. Plane P, passes
through 4 and is orthogonal to the line BC, whilst plane P; passes through
B and is orthogonal to the line AC. Find the coordinates of r, the point of
intersection of the three planes.

Two planes have non-parallel unit normals fi and  and their closest distances
from the origin are A and p, respectively. Find the vector equation of their line
of intersection in the form r = vp + a.

Two fixed points, A and B, in three-dimensional space have position vectors a
and b. Identify the plane P given by

(a—b)-r= (b,

where a and b are the magnitudes of a and b.
Show also that the equation

(a—r)-(b—r)=0

describes a sphere S of radius |a —b|/2. Deduce that the intersection of P and S
is also the intersection of two spheres, centred on 4 and B, and each of radius
la—bl//2.

Let O, A4, B and C be four points with position vectors 0, a, b and ¢, and denote
by g = Ja+ pb + ve the position of the centre of the sphere on which they all lie.

(a) Prove that 4, u and v simultaneously satisfy
(a-a)i+(a-b)u+(a-cy=1ia

and two other similar equations.

(b) By making a change of origin, find the centre and radius of the sphere on
which the points p = 3i+j—2k, q = 4i+3j—3k, r = 7i—3k and s = 6i+j—k
all lie.

2

The vectors a, b and ¢ are coplanar and related by
Ja+ ub+ve =0,

where A, u, v are not all zero. Show that the condition for the points with position
vectors aa, fb and yc to be collinear is

#

A v
S+Z+-=0.
a By

Using vector methods:

(a) Show that the line of intersection of the planes x + 2y + 3z = 0 and
3x 4+ 2y 4+ z = 0 is equally inclined to the x- and z-axes and makes an angle
cos™!(—2//6) with the y-axis.

(b) Find the perpendicular distance between one corner of a unit cube and the
major diagonal not passing through it.

Four points X;, i = 1,2,3,4, taken for simplicity as all lying within the octant

x,y,z > 0, have position vectors x;. Convince yourself that the direction of
vector x, lies within the sector of space defined by the directions of the other

three vectors if
| xiex
min ,
over j | [Xi][x]

considered for i = 1,2,3,4 in turn, takes its maximum value for i = n, i.e. n equals
that value of i for which the largest of the set of angles which x; makes with
the other vectors, is found to be the lowest. Determine whether any of the four
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7.19

7.20

7.21

Figure 7.17 A face-centred cubic crystal.

points with coordinates
X1=(22), X=(231), X=(213), X4=(,0,3)

lies within the tetrahedron defined by the origin and the other three points.

The vectors a, b and ¢ are not coplanar. The vectors a’, b’ and ¢’ are the
associated reciprocal vectors. Verify that the expressions (7.49)—(7.51) define a set
of reciprocal vectors a’, b' and ¢’ with the following properties:

(a) a’-a=b-b=c .- c=1;

(b) a-b=a -c=b-a etc=0;
(c) [a,b,c1=1/[ab,cl;

(d) a=(b xc)/[a,b,c].

Three non-coplanar vectors a, b and ¢, have as their respective reciprocal vectors
the set a’, b’ and ¢’. Show that the normal to the plane containing the points
k~—'a, I"'b and m~'c is in the direction of the vector ka’ + b’ 4+ mc'.

In a crystal with a face-centred cubic structure, the basic cell can be taken as a
cube of edge a with its centre at the origin of coordinates and its edges parallel
to the Cartesian coordinate axes; atoms are sited at the eight corners and at the
centre of each face. However, other basic cells are possible. One is the rhomboid
shown in figure 7.17, which has the three vectors b, ¢ and d as edges.

(a) Show that the volume of the rhomboid is one-quarter that of the cube.

(b) Show that the angles between pairs of edges of the rhomboid are 60° and that
the corresponding angles between pairs of edges of the rhomboid defined by
the reciprocal vectors to b, ¢, d are each 109.5°. (This rhomboid can be used
as the basic cell of a body-centred cubic structure, more easily visualised as
a cube with an atom at each corner and one at its centre.)

(c) In order to use the Bragg formula, 2d sin 0 = n4, for the scattering of X-rays
by a crystal, it is necessary to know the perpendicular distance d between
successive planes of atoms; for a given crystal structure, d has a particular
value for each set of planes considered. For the face-centred cubic structure
find the distance between successive planes with normals in the k, i +j and
i+ j+ k directions.
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7.22

7.23

7.24

In subsection 7.6.2 we showed how the moment or torque of a force about an axis
could be represented by a vector in the direction of the axis. The magnitude of
the vector gives the size of the moment and the sign of the vector gives the sense.
Similar representations can be used for angular velocities and angular momenta.

(a) The magnitude of the angular momentum about the origin of a particle of
mass m moving with velocity v on a path that is a perpendicular distance d
from the origin is given by m|v|d. Show that if r is the position of the particle
then the vector J =r x mv represents the angular momentum.

(b) Now consider a rigid collection of particles (or a solid body) rotating about
an axis through the origin, the angular velocity of the collection being
represented by .

(i) Show that the velocity of the ith particle is
Vi= XT;

and that the total angular momentum J is

J= Z mi[rizw —(r; - o)r].

(ii) Show further that the component of J along the axis of rotation can
be written as Iw, where I, the moment of inertia of the collection
about the axis or rotation, is given by

I= Z mip?.
i

Interpret p; geometrically.
(iii) Prove that the total kinetic energy of the particles is %I w?.

By proceeding as indicated below, prove the parallel axis theorem, which states
that, for a body of mass M, the moment of inertia I about any axis is related to
the corresponding moment of inertia I, about a parallel axis that passes through
the centre of mass of the body by

I =1+ Md},

where a, is the perpendicular distance between the two axes. Note that I, can
be written as

/(ﬁxr)-(ﬁxr)dm,

where r is the vector position, relative to the centre of mass, of the infinitesimal
mass dm and fi is a unit vector in the direction of the axis of rotation. Write a
similar expression for I in which r is replaced by r' = r — a, where a is the vector
position of any point on the axis to which I refers. Use Lagrange’s identity and
the fact that | rdm = 0 (by the definition of the centre of mass) to establish the
result.

Without carrying out any further integration, use the results of the previous
exercise, the worked example in subsection 6.3.4 and exercise 6.10 to prove that
the moment of inertia of a uniform rectangular lamina, of mass M and sides a
and b, about an axis perpendicular to its plane and passing through the point
(xa/2,pb/2), with —1 <o, f < 1, is

%[az(l + 302) + B2(1 + 3p7)].
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7.10 EXERCISES

7.25

7.26

7.27

\V4\ | Vz\
T 1 T 1
7 e
—— |y L 2
R =50Q 72
I,
I C =10 uF
I
~) Vo coswt |
-
Vs

Figure 7.18 An oscillatory electric circuit. The power supply has angular
frequency o = 2nf = 4007 s~

Define a set of (non-orthogonal) base vectorsa=j+k, b=i+kand c=i+j.

(a) Establish their reciprocal vectors and hence express the vectors p = 3i—2j+k,
q=1i+4jand r = —2i +j+k in terms of the base vectors a, b and c.

(b) Verify that the scalar product p - q has the same value, —5, when evaluated
using either set of components.

Systems that can be modelled as damped harmonic oscillators are widespread;
pendulum clocks, car shock absorbers, tuning circuits in television sets and radios,
and collective electron motions in plasmas and metals are just a few examples.

In all these cases, one or more variables describing the system obey(s) an
equation of the form

X+ 2yx + wéx = P cos wt,

where x = dx/dt, etc. and the inclusion of the factor 2 is conventional. In the
steady state (i.e. after the effects of any initial displacement or velocity have been
damped out) the solution of the equation takes the form

x(t) = Acos(wt + ¢).

By expressing each term in the form B cos(w t+€), and representing it by a vector
of magnitude B making an angle € with the x-axis, draw a closed vector diagram,
at t = 0, say, that is equivalent to the equation.

(a) Convince yourself that whatever the value of w (> 0) ¢ must be negative
(—nm < ¢ <0) and that
72'”60
=tan"! (| —— ).
= (2)

(b) Obtain an expression for A in terms of P, wy and w.

According to alternating current theory, the currents and potential differences in
the components of the circuit shown in figure 7.18 are determined by Kirchhoff’s
laws and the relationships

Vi Vs
= L=,
R R,
The factor i = \/—1 in the expression for I3 indicates that the phase of I3 is 90°
ahead of V3. Similarly the phase of Vj is 90° ahead of I,.

Measurement shows that V3 has an amplitude of 0.661V, and a phase of
+13.4° relative to that of the power supply. Taking V, = 1V, and using a series

I1 = 13 = i(DCV3, V4 = i(DLIz.
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7.1

7.5

7.7

7.11

7.13

7.15

7.17

7.19

7.21

7.23
7.25

7.27

of vector plots for potential differences and currents (they could all be on the
same plot if suitable scales were chosen), determine all unknown currents and
potential differences and find values for the inductance of L and the resistance
of Rz.

[Scales of 1cm = 0.1V for potential differences and 1cm = 1 mA for currents
are convenient.

7.11 Hints and answers

(c), (d) and (e).

(a) A sphere of radius k centred on the origin; (b) a plane with its normal in the
direction of u and at a distance / from the origin; (c) a cone with its axis parallel
to u and of semiangle cos~' m; (d) a circular cylinder of radius n with its axis
parallel to u.

(a) cos™' \/2/3; (b) z —x =2; (c) 1//2; (d)%%cxg) j %
Show that q x r is parallel to p, Volume_ 1[igxr)- p}

Note that (a x b)- (¢ xd)=d-[(axb)xc] and use the result for a triple vector

product to expand the expression in square brackets.

Show that the position vectors of the points are linearly dependent; r =a + ib

wherea=i+kand b=—j+k.

Show that p must have the direction fi x fh and write a as xfi+ ym. By obtaining a

pair of simultaneous equations for x and y, prove that x = (A—uh-t)/[1—(f-m)?]

and that y = (u— An - m)/[1 — (- m)?].

(a) Note that J]a—g> = R> = |0 —g|?, leadingtoa-a=2a-g.

(b) Make p the new origin and solve the three simultaneous linear equations to
obtain A = 5/18, p = 10/18, v = —3/18, giving g = 2i — k and a sphere of
radius \/5 centred on (5,1, —3).

(a) Find two points on both planes, say (0,0,0) and (1,—2, 1), and hence determine

the direction cosines of the line of intersection; (b) (%)1/2

For (c) and (d), treat (¢ x a) X (a x b) as a triple vector product with ¢ x a as one

of the three vectors.

b)Y =a(—i+j+k), ¢ =al(i—j+k),d =a'(i+j—k); (c) a/2 for direction

k; successive planes through (0,0,0) and (a/2,0,a/2) give a spacing of a/+/8 for

direction i+ j; successive planes through (—a/2,0,0) and (a/2,0,0) give a spacing

of a/+/3 for direction i+j + k.

Note that a*> — (i - a) =a.

p=—2a+3b,q= —a— —b+ s¢ and r = 2a—b—c. Remember thata-a=b-b=

c-c:2anda<b—a c-b c-l

With currents in mA and potential differences in volts:

= (7.76,—23.2°), I, = (14.36,—50.8°), I3 = (8.30,103.4°);
= (0.388,—23.2°), V, = (0.287,—50.8°), V4 = (0.596,39.2°);
L=33mH, R, =20 Q.
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8

Matrices and vector spaces

In the previous chapter we defined a vector as a geometrical object which has
both a magnitude and a direction and which may be thought of as an arrow fixed
in our familiar three-dimensional space, a space which, if we need to, we define
by reference to, say, the fixed stars. This geometrical definition of a vector is both
useful and important since it is independent of any coordinate system with which
we choose to label points in space.

In most specific applications, however, it is necessary at some stage to choose
a coordinate system and to break down a vector into its component vectors in
the directions of increasing coordinate values. Thus for a particular Cartesian
coordinate system (for example) the component vectors of a vector a will be ayi,
ayj and a:k and the complete vector will be

a=a,di+aj+ak (8.1)

Although we have so far considered only real three-dimensional space, we may
extend our notion of a vector to more abstract spaces, which in general can
have an arbitrary number of dimensions N. We may still think of such a vector
as an ‘arrow’ in this abstract space, so that it is again independent of any (N-
dimensional) coordinate system with which we choose to label the space. As an
example of such a space, which, though abstract, has very practical applications,
we may consider the description of a mechanical or electrical system. If the state
of a system is uniquely specified by assigning values to a set of N variables,
which could be angles or currents, for example, then that state can be represented
by a vector in an N-dimensional space, the vector having those values as its
components.

In this chapter we first discuss general vector spaces and their properties. We
then go on to discuss the transformation of one vector into another by a linear
operator. This leads naturally to the concept of a matrix, a two-dimensional array
of numbers. The properties of matrices are then discussed and we conclude with
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a discussion of how to use these properties to solve systems of linear equations.
The application of matrices to the study of oscillations in physical systems is
taken up in chapter 9.

8.1 Vector spaces
A set of objects (vectors) a, b, ¢, ... is said to form a linear vector space V if:
(i) the set is closed under commutative and associative addition, so that

atb=b+a, (8.2)
(a+b)+c=a+(b+ec); (8.3)

(i) the set is closed under multiplication by a scalar (any complex number) to
form a new vector Aa, the operation being both distributive and associative

so that
AMa+b)=Ja+ /b, (8.4)
(A 4+ p)a = Ja + ua, (8.5)
Mpa) = (1wa, (8.6)

where /4 and yu are arbitrary scalars;

(iii) there exists a null vector 0 such that a4 0 = a for all a;

(iv) multiplication by unity leaves any vector unchanged, i.e. 1 X a = a;

(v) all vectors have a corresponding negative vector —a such that a4 (—a) = 0.
It follows from (8.5) with 4/ =1 and p = —1 that —a is the same vector as
(—1) x a.

We note that if we restrict all scalars to be real then we obtain a real vector
space (an example of which is our familiar three-dimensional space); otherwise,
in general, we obtain a complex vector space. We note that it is common to use the
terms ‘vector space’ and ‘space’, instead of the more formal ‘linear vector space’.

The span of a set of vectors a,b,...,s is defined as the set of all vectors that
may be written as a linear sum of the original set, i.e. all vectors

x=c0a+fb+---+o0s (8.7)

that result from the infinite number of possible values of the (in general complex)
scalars o, f3,...,0. If x in (8.7) is equal to 0 for some choice of o, f3,...,0 (not all
zero), i.e. if

wa+pb+ - +os=0, (8.8)

then the set of vectors a,b,...,s, is said to be linearly dependent. In such a set
at least one vector is redundant, since it can be expressed as a linear sum of
the others. If, however, (8.8) is not satisfied by any set of coefficients (other than
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the trivial case in which all the coefficients are zero) then the vectors are linearly
independent, and no vector in the set can be expressed as a linear sum of the
others.

If, in a given vector space, there exist sets of N linearly independent vectors,
but no set of N + 1 linearly independent vectors, then the vector space is said to
be N-dimensional. (In this chapter we will limit our discussion to vector spaces of
finite dimensionality; spaces of infinite dimensionality are discussed in chapter 17.)

8.1.1 Basis vectors

If ¥V is an N-dimensional vector space then any set of N linearly independent
vectors eq, ey,..., ey forms a basis for V. If x is an arbitrary vector lying in V' then
the set of N + 1 vectors X, ey, ey,..., ey, must be linearly dependent and therefore
such that

oe; + fer+---+oey+yx =0, (8.9)

where the coefficients a, f3,..., are not all equal to 0, and in particular y # 0.
Rearranging (8.9) we may write x as a linear sum of the vectors e; as follows:
N
x=x1e1+x2e2+---+xNeN=Zx,-e;, (8.10)
i=1
for some set of coefficients x; that are simply related to the original coefficients,
e.g x; = —a/y, xo = —f/y, etc. Since any x lying in the span of V can be
expressed in terms of the basis or base vectors e;, the latter are said to form
a complete set. The coefficients x; are the components of x with respect to the
e;-basis. These components are unique, since if both

N N
X = E X;€; and X = E yiei,
i=1 i=1

then
N
> (xi— yi)ei =0, (8.11)
i=1

which, since the e; are linearly independent, has only the solution x; = y; for all
i=12,...,N.

From the above discussion we see that any set of N linearly independent
vectors can form a basis for an N-dimensional space. If we choose a different set
e, i=1,...,N then we can write x as

N
X = x\e}| + xhe) + - + xyey = E x'e. (8.12)
i1
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We reiterate that the vector x (a geometrical entity) is independent of the basis
— it is only the components of x that depend on the basis. We note, however,
that given a set of vectors uj,uy,...,uy, where M # N, in an N-dimensional
vector space, then either there exists a vector that cannot be expressed as a
linear combination of the w; or, for some vector that can be so expressed, the
components are not unique.

8.1.2 The inner product

We may usefully add to the description of vectors in a vector space by defining
the inner product of two vectors, denoted in general by (a|b), which is a scalar
function of a and b. The scalar or dot product, a - b = |a||b|cos 0, of vectors
in real three-dimensional space (where 0 is the angle between the vectors), was
introduced in the last chapter and is an example of an inner product. In effect the
notion of an inner product (a|b) is a generalisation of the dot product to more
abstract vector spaces. Alternative notations for (a|b) are (a,b), or simply a - b.
The inner product has the following properties:

(i) (afb) = (bla)",

(i) (a|Ab 4 uc) = A(alb) + u(ajc).
We note that in general, for a complex vector space, (i) and (ii) imply that
(7a + pble) = 2" (ale) + 1" (ble), (8.13)
(Aa|ub) = A" pu(alb). (8.14)

Following the analogy with the dot product in three-dimensional real space,
two vectors in a general vector space are defined to be orthogonal if (a|b) = 0.
Similarly, the norm of a vector a is given by |a| = (ala)!/? and is clearly a
generalisation of the length or modulus |a| of a vector a in three-dimensional
space. In a general vector space (ala) can be positive or negative; however, we
shall be primarily concerned with spaces in which (aja) > 0 and which are thus
said to have a positive semi-definite norm. In such a space (ala) = 0 implies a = 0.

Let us now introduce into our N-dimensional vector space a basis €j,€y,...,ey
that has the desirable property of being orthonormal (the basis vectors are mutually
orthogonal and each has unit norm), i.e. a basis that has the property

(&le;) = dy. (8.15)
Here 6;; is the Kronecker delta symbol (of which we say more in chapter 26) and
has the properties
1 fori=j,
dij = .
0 fori#j.
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In the above basis we may express any two vectors a and b as

N N
a= E a,-é,- and b= E b,’él‘.
i=1 i=1

Furthermore, in such an orthonormal basis we have, for any a,

N

(@jla) =) " (&)laid;) Za, (8.16)
i=1

i=1
Thus the components of a are given by a; = (¢;]a). Note that this is not true

unless the basis is orthonormal. We can write the inner product of a and b in
terms of their components in an orthonormal basis as

(alb) = (a1& + axér + - - - + aNéN\blél +byey + -+ byéy)

N
=Z e\e,—i—ZZab
i=1 i=1 j#i
N
2 it

where the second equality follows from (8.14) and the third from (8.15). This is
clearly a generalisation of the expression (7.21) for the dot product of vectors in
three-dimensional space.

We may generalise the above to the case where the base vectors ey, e,,...,ey
are not orthonormal (or orthogonal). In general we can define the N> numbers

G,'j = (e,-\e_,-). (817)

Then, if a = Zf\il aie; and b = Zfil b;e;, the inner product of a and b is given by

(alb) = <2N:ae Zb e,>

N

Il
Mz

Za bj(eile;)

1 1

~.

N
Z a;Gib,. (8.18)

—1

Il
M=

1

~

We further note that from (8.17) and the properties of the inner product we
require G;; = G;‘-i. This in turn ensures that |a| = (ala) is real, since then

N
a‘a = ZZQ,GUQJ = Zza;Gjiai = (a\a).

i=1 j=1 Jj=1 i=1
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8.1.3 Some useful inequalities

For a set of objects (vectors) forming a linear vector space in which (ala) > 0 for
all a, the following inequalities are often useful.

(i)

(ii)

(iif)

Schwarz’s inequality is the most basic result and states that
[(alb)| < [all|bll, (8.19)

where the equality holds when a is a scalar multiple of b, i.e. when a = /b.
It is important here to distinguish between the absolute value of a scalar,
|A|, and the norm of a vector, ||a. Schwarz’s inequality may be proved by
considering

[a -+ ib[*> = (a + Jbja + ib)
= (ala) + A(a|b) + 2" (b|a) + 21" (b|b).
If we write (a|b) as |(a|b)|e™ then
la+ 2b|* = [a]® + |27 |b]* + [(alb) ™ + 2"| (a[b)[e ™.

However, |a + Ab||> > 0 for all 4, so we may choose . = re ™ and require
that, for all r,

0 < [la+/b|* = |a|* + 72| b]* + 2r|(alb)].

This means that the quadratic equation in r formed by setting the RHS
equal to zero must have no real roots. This, in turn, implies that

4i(alb)|> < 4[al(b]?,

which, on taking the square root (all factors are necessarily positive) of
both sides, gives Schwarz’s inequality.
The triangle inequality states that

la+bll < a] + (b (8.20)

and may be derived from the properties of the inner product and Schwarz’s
inequality as follows. Let us first consider

la+b]* = [a]* + [b]* + 2 Re {alb) < [la]* + [b]* + 2|{a[b)].
Using Schwarz’s inequality we then have
la+b[* < [[a]* + [b]* + 2]l [b] = (la] + b)),

which, on taking the square root, gives the triangle inequality (8.20).
Bessel’s inequality requires the introduction of an orthonormal basis &;,
i=1,2,...,N into the N-dimensional vector space; it states that

lal® =) " [(@la)P, (821)
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where the equality holds if the sum includes all N basis vectors. If not
all the basis vectors are included in the sum then the inequality results
(though of course the equality remains if those basis vectors omitted all
have a; = 0). Bessel’s inequality can also be written

(ala) > Z lai%,

where the g; are the components of a in the orthonormal basis. From (8.16)
these are given by a; = (&;|a). The above may be proved by considering

A=Y @e) = (a— S @ajefa— > @),

j
Expanding out the inner product and using (&]a)" = (a|é;), we obtain

a— Z(éi|a>éi

i

2

2
= (ala) =2 (ale;)(@la) + D > (ale))(&)la)(@&le;).
i i j

Now (&;é;) = djj, since the basis is orthonormal, and so we find

2
a—Y (&la)e| =lal> =) [@&la)P,
i

i

0<

which is Bessel’s inequality.
We take this opportunity to mention also
(iv) the parallelogram equality
la+bl* + la—b* =2 (Jal* + [b]?), (8.22)

which may be proved straightforwardly from the properties of the inner
product.

8.2 Linear operators

We now discuss the action of linear operators on vectors in a vector space. A
linear operator A associates with every vector x another vector

y=Ax,
in such a way that, for two vectors a and b,
A(la+ pub) = AAa+ uAb,

where 4, u are scalars. We say that A ‘operates’ on x to give the vector y. We
note that the action of A is independent of any basis or coordinate system and
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may be thought of as ‘transforming’ one geometrical entity (i.e. a vector) into
another.

If we now introduce a basis e;, i = 1,2,..., N, into our vector space then the
action of A on each of the basis vectors is to produce a linear combination of
the latter; this may be written as

N
Ae; =" Aje;, (8.23)
i=1

where A4;; is the ith component of the vector Ae; in this basis; collectively the
numbers A4;; are called the components of the linear operator in the e;-basis. In
this basis we can express the relation y = Ax in component form as

N N

N
y=2_me =AY x| =D %) Ay
i=1 §

j=1 j=1 =l

and hence, in purely component form, in this basis we have

N
vi= ) Ayx;. (8.24)
j=1

", in which the components of x, y and A

are xj, y; and Aj; respectively then the geometrical relationship y = .Ax would be
represented in this new basis by

If we had chosen a different basis e

N
r_ [
yi= § Ajjx;.
j=1

We have so far assumed that the vector y is in the same vector space as
x. If, however, y belongs to a different vector space, which may in general be
M-dimensional (M # N) then the above analysis needs a slight modification. By
introducing a basis set f;, i = 1,2,..., M, into the vector space to which y belongs
we may generalise (8.23) as

M
A €= Z A,'jfi,
i=1

where the components A4;; of the linear operator A relate to both of the bases e;
and f;.
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8.2.1 Properties of linear operators
If x is a vector and A and B are two linear operators then it follows that

(A +B)x=Ax+ Bx,
(AA)x = A AX),
(AB)x = A(Bx),

where in the last equality we see that the action of two linear operators in
succession is associative. The product of two linear operators is not in general
commutative, however, so that in general ABx # B Ax. In an obvious way we
define the null (or zero) and identity operators by

Ox=0 and Ix =X,

for any vector x in our vector space. Two operators A and B are equal if
Ax = Bx for all vectors x. Finally, if there exists an operator A~! such that

AAT =ATA =1

then A~! is the inverse of A. Some linear operators do not possess an inverse
and are called singular, whilst those operators that do have an inverse are termed
non-singular.

8.3 Matrices

We have seen that in a particular basis e; both vectors and linear operators
can be described in terms of their components with respect to the basis. These
components may be displayed as an array of numbers called a matrix. In general,
if a linear operator A transforms vectors from an N-dimensional vector space,
for which we choose a basis e;, j = 1,2,...,N, into vectors belonging to an
M-dimensional vector space, with basis f;, i = 1,2,..., M, then we may represent
the operator A by the matrix

A A ... AN
Ay Axn ... A

A= . . . (8.25)
AMI AM2 ses AMN

The matrix elements A;; are the components of the linear operator with respect
to the bases e; and f;; the component 4;; of the linear operator appears in the
ith row and jth column of the matrix. The array has M rows and N columns
and is thus called an M x N matrix. If the dimensions of the two vector spaces
are the same, i.e. M = N (for example, if they are the same vector space) then we
may represent A by an N X N or square matrix of order N. The component 4;;,
which in general may be complex, is also denoted by (A);;.
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In a similar way we may denote a vector x in terms of its components x; in a
basis e;, i = 1,2,..., N, by the array

which is a special case of (8.25) and is called a column matrix (or conventionally,
and slightly confusingly, a column vector or even just a vector — strictly speaking
the term ‘vector’ refers to the geometrical entity x). The column matrix x can also
be written as

x=(x; x - XN)T,

which is the transpose of a row matrix (see section 8.6).
We note that in a different basis e} the vector x would be represented by a
different column matrix containing the components x} in the new basis, i.e.
X
Xy

Xy
Thus, we use x and x’ to denote different column matrices which, in different bases
e; and e}, represent the same vector x. In many texts, however, this distinction is
not made and x (rather than x) is equated to the corresponding column matrix; if
we regard x as the geometrical entity, however, this can be misleading and so we
explicitly make the distinction. A similar argument follows for linear operators;
the same linear operator A is described in different bases by different matrices A
and A, containing different matrix elements.

8.4 Basic matrix algebra

The basic algebra of matrices may be deduced from the properties of the linear
operators that they represent. In a given basis the action of two linear operators
A and B on an arbitrary vector x (see the beginning of subsection 8.2.1), when
written in terms of components using (8.24), is given by

D A+B)x = Ajxi+ Y Bix,
J J J
Z(;L,A)ijxj =] Z Ainj,
J J
D (AB)yx; = > Aw(Bx)i =Y Y AuBix;.
j k ik
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Now, since x is arbitrary, we can immediately deduce the way in which matrices
are added or multiplied, i.e.

(A+B); = A;j + By, (8.26)
(ZA)i; = AAij, (8.27)
(AB);; = ZAikBkj~ (8.28)

k

We note that a matrix element may, in general, be complex. We now discuss
matrix addition and multiplication in more detail.

8.4.1 Matrix addition and multiplication by a scalar

From (8.26) we see that the sum of two matrices, S = A + B, is the matrix whose
elements are given by

Sij = Aij + Byj

for every pair of subscripts i,j, with i = 1,2,...,M and j = 1,2,...,N. For
example, if A and B are 2 x 3 matrices then S = A + B is given by

( S S Si3 ) _ ( Ay A A ) n ( By By By )
St Sn Sx Ay An An B>; Bxn Bn
_ ( A+ B A+ Bz A+ Bis )

= 8.29
Ay + By Axn+ Bn Ay + By (8.29)

Clearly, for the sum of two matrices to have any meaning, the matrices must have
the same dimensions, i.e. both be M x N matrices.

From definition (8.29) it follows that A+ B = B + A and that the sum of a
number of matrices can be written unambiguously without bracketting, i.e. matrix
addition is commutative and associative.

The difference of two matrices is defined by direct analogy with addition. The
matrix D = A — B has elements

Dj=Ay—By, fori=12...,M,j=12,..N. (8.30)

From (8.27) the product of a matrix A with a scalar A is the matrix with
elements 44;;, for example

)(An Ap A13)=<1A11 LA 7»/113) (831)
Ay Ay Axp AAxy AAp AAy )

Multiplication by a scalar is distributive and associative.
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» The matrices A, B and C are given by

(3) o= (5 8) e-(3 1)

Find the matrix D = A 4+ 2B — C.

1 -2 1
o-(3 7 )+2(0 H)-(F 1)
<2+2x1—(2) —14+2x0-1 ) <6 —2) <
1 14+2x(=2)—1 4 —4 )

342%x0—(
From the above considerations we see that the set of all, in general complex,
M x N matrices (with fixed M and N) forms a linear vector space of dimension
MN. One basis for the space is the set of M x N matrices E?% with the property
that E};”‘” =11ifi = p and j = g whilst E}f"“ = 0 for all other values of i and
J» i.e. each matrix has only one non-zero entry, which equals unity. Here the pair
(p,q) is simply a label that picks out a particular one of the matrices E»9, the
total number of which is MN.

8.4.2 Multiplication of matrices
Let us consider again the ‘transformation’ of one vector into another, y = Ax,
which, from (8.24), may be described in terms of components with respect to a
particular basis as

N
vi=Y Ayx; fori=12_. M. (8.32)

Writing this in matrix form as y = Ax we have

i Ay Ap ... A
| Ay Ap ... A

= : (8.33)
VM A1 Am2 ... Amn

where we have highlighted with boxes the components used to calculate the
element y,: using (8.32) for i =2,

Y2 = Apxy + Apxy + -+ - + AanXn.

All the other components y; are calculated similarly.
If instead we operate with A on a basis vector e; having all components zero
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except for the jth, which equals unity, then we find

0
Ay Ap ... A 0 Ay
Ay Axn ... A | : Ayj
Aej = . . . . 1 = . 5
At A2 ... Amn : Apm;j
0

and so confirm our identification of the matrix element 4;; as the ith component
of Ae; in this basis.

From (8.28) we can extend our discussion to the product of two matrices
P = AB, where P is the matrix of the quantities formed by the operation of
the rows of A on the columns of B, treating each column of B in turn as the
vector x represented in component form in (8.32). It is clear that, for this to be
a meaningful definition, the number of columns in A must equal the number of
rows in B. Thus the product AB of an M x N matrix A with an N X R matrix B
is itself an M x R matrix P, where

N
Py=> AyBy fori=12...M, j=12...R
k=1

For example, P = AB may be written in matrix form

By | Bz
P P A A A
( 12 > _ ( 1 Ap A ) By, | Boy

Py Py Ay Ap An By | By

where

P11 = AuBi + A12Bar + A13Bsy,
Py = Ay Bi1 + AnBai + A23Bsy,
Py = A11Bia + A1nBay + A13B3,
Py = A2 By + A»By + Ax B3

Multiplication of more than two matrices follows naturally and is associative.
So, for example,

A(BC) = (AB)C, (8.34)

provided, of course, that all the products are defined.
As mentioned above, if A is an M x N matrix and B is an N x M matrix then
two product matrices are possible, i.e.

P =AB and Q = BA.
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These are clearly not the same, since P is an M x M matrix whilst Q is an
N x N matrix. Thus, particular care must be taken to write matrix products in
the intended order; P = AB but Q = BA. We note in passing that A> means AA,
A% means A(AA) = (AA)A etc. Even if both A and B are square, in general

AB + BA, (8.35)

i.e. the multiplication of matrices is not, in general, commutative.

» Evaluate P = AB and Q = BA where

32— 2 -2 3
A=|o0 3 2|, B=[1 1 o].
1 -3 4 302 1

As we saw for the 2 x 2 case above, the element P;; of the matrix P = AB is found by
mentally taking the ‘scalar product’ of the ith row of A with the jth column of B. For
example, Pj; =3x242x14(—1)x3=5 P =3x(-2)+2x1+(—1)x2=—6, etc.

Thus
5 —6 8
= 9 7 21,
1 3 7
and, similarly,

2 =2 3 32 -1 9 —11 6
Q=BA= 1 1 0 0 3 2 = 3 5 1.
32 1 1 -3 4 0 9 5

These results illustrate that, in general, two matrices do not commute. <

The property that matrix multiplication is distributive over addition, i.e. that
(A+B)C=AC+BC (8.36)
and
C(A+B)=CA+CB, (8.37)

follows directly from its definition.

8.4.3 The null and identity matrices

Both the null matrix and the identity matrix are frequently encountered, and we
take this opportunity to introduce them briefly, leaving their uses until later. The
null or zero matrix 0 has all elements equal to zero, and so its properties are

A0 =0 =0A,
A+0=0+A=A.
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The identity matrix | has the property
Al=1A=A.

It is clear that, in order for the above products to be defined, the identity matrix
must be square. The N x N identity matrix (often denoted by Iy) has the form

1 0 - 0
0 1
Iy =
-
0 0 1

8.5 Functions of matrices

If a matrix A is square then, as mentioned above, one can define powers of A in
a straightforward way. For example A> = AA, A3 = AAA, or in the general case

A"=AA---A (n times),

where n is a positive integer. Having defined powers of a square matrix A, we
may construct functions of A of the form

S = Za,,A",
n

where the a; are simple scalars and the number of terms in the summation may
be finite or infinite. In the case where the sum has an infinite number of terms,
the sum has meaning only if it converges. A common example of such a function
is the exponential of a matrix, which is defined by

x© Al
exp A=) e (8.38)
n=0
This definition can, in turn, be used to define other functions such as sin A and
cos A.

8.6 The transpose of a matrix

We have seen that the components of a linear operator in a given coordinate sys-
tem can be written in the form of a matrix A. We will also find it useful, however,
to consider the different (but clearly related) matrix formed by interchanging the
rows and columns of A. The matrix is called the transpose of A and is denoted
by AT.
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» Find the transpose of the matrix
31 2
A= ( 0 4 1 )

By interchanging the rows and columns of A we immediately obtain

30
AT=[ 1 4 |. «
2 1

It is obvious that if A is an M x N matrix then its transpose AT is a N x M
matrix. As mentioned in section 8.3, the transpose of a column matrix is a
row matrix and vice versa. An important use of column and row matrices is
in the representation of the inner product of two real vectors in terms of their
components in a given basis. This notion is discussed fully in the next section,
where it is extended to complex vectors.

The transpose of the product of two matrices, (AB)T, is given by the product
of their transposes taken in the reverse order, i.e.

(AB)T = BTAT. (8.39)
This is proved as follows:
(AB)!; = (AB);i = > _ AuBu
k

=> (AN)(BNa =D (BNal(AT)j = (BTAT),
k

k

and the proof can be extended to the product of several matrices to give

(ABC---G)T =GT...cTBTAT.

8.7 The complex and Hermitian conjugates of a matrix

Two further matrices that can be derived from a given general M x N matrix
are the complex conjugate, denoted by A", and the Hermitian conjugate, denoted
by AT,

The complex conjugate of a matrix A is the matrix obtained by taking the
complex conjugate of each of the elements of A, i.e.

(A" = (4y)"
Obviously if a matrix is real (i.e. it contains only real elements) then A” = A.
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» Find the complex conjugate of the matrix
A= ( 150 1 0 ) :
By taking the complex conjugate of each element we obtain immediately
A*=< i1 o >"

The Hermitian conjugate, or adjoint, of a matrix A is the transpose of its
complex conjugate, or equivalently, the complex conjugate of its transpose, i.e.

Af = (AT = (AT)".

We note that if A is real (and so A* = A) then AT = AT, and taking the Hermitian
conjugate is equivalent to taking the transpose. Following the previous line of
argument for the transpose of the product of several matrices, the Hermitian
conjugate of such a product can be shown to be given by

(AB---G)f =G'...BTAT. (8.40)

» Find the Hermitian conjugate of the matrix
1 2 3i
A= ( 1+i 1 0 ) :

Taking the complex conjugate of A and then forming the transpose we find

1 1—i
Al = 2 1
—3i 0

We obtain the same result, of course, if we first take the transpose of A and then take the
complex conjugate. <«

An important use of the Hermitian conjugate (or transpose in the real case)
is in connection with the inner product of two vectors. Suppose that in a given
orthonormal basis the vectors a and b may be represented by the column matrices

aj bl
a bZ

a= . and b= . . (8.41)
an bN

Taking the Hermitian conjugate of a, to give a row matrix, and multiplying (on
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the right) by b we obtain

by
b, N
alb=(aja; - ay)| | =D abs (8.42)
. i=1
by
which is the expression for the inner product (a|b) in that basis. We note that for

real vectors (8.42) reduces to a'b = Zfil a;b;.
If the basis e; is not orthonormal, so that, in general,

(eile;) = Gij # 0y,

then, from (8.18), the scalar product of a and b in terms of their components with
respect to this basis is given by

N N
(a\b) = Z Z a;‘G,«jb, = a*Gb,

i=1 j=1

where G is the N x N matrix with elements G;;.

8.8 The trace of a matrix

For a given matrix A, in the previous two sections we have considered various
other matrices that can be derived from it. However, sometimes one wishes to
derive a single number from a matrix. The simplest example is the trace (or spur)
of a square matrix, which is denoted by Tr A. This quantity is defined as the sum
of the diagonal elements of the matrix,

N
TrA:All+A22+'~~+ANN=ZAii~ (8.43)

i=1
It is clear that taking the trace is a linear operation so that, for example,
Tr(A+B)=TrA +TrB.

A very useful property of traces is that the trace of the product of two matrices
is independent of the order of their multiplication; this results holds whether or
not the matrices commute and is proved as follows:

N

N N N N N
TrAB = (AB)i=» > AyBji=)_ Y Bjdj=> (BA);=TrBA

i=1 i=1 j=1 i=1 j=1 j=1 (8.44)

The result can be extended to the product of several matrices. For example, from
(8.44), we immediately find

Tr ABC = Tr BCA = Tr CAB,
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which shows that the trace of a multiple product is invariant under cyclic
permutations of the matrices in the product. Other easily derived properties of
the trace are, for example, Tr AT = Tr A and Tr AT = (Tr A)".

8.9 The determinant of a matrix

For a given matrix A, the determinant det A (like the trace) is a single number (or
algebraic expression) that depends upon the elements of A. Also like the trace,
the determinant is defined only for square matrices. If, for example, A is a 3 x 3
matrix then its determinant, of order 3, is denoted by

Ain A A
det A= ‘Al = A21 A22 A23 . (845)
Az A Az

In order to calculate the value of a determinant, we first need to introduce
the notions of the minor and the cofactor of an element of a matrix. (We
shall see that we can use the cofactors to write an order-3 determinant as the
weighted sum of three order-2 determinants, thereby simplifying its evaluation.)
The minor M;; of the element A4;; of an N X N matrix A is the determinant of
the (N — 1) x (N — 1) matrix obtained by removing all the elements of the ith
row and jth column of A; the associated cofactor, C;;, is found by multiplying
the minor by (—1)*/.

» Find the cofactor of the element A,z of the matrix

Ay A A
A= | An An Axn
Ay Ay Az

Removing all the elements of the second row and third column of A and forming the
determinant of the remaining terms gives the minor

| Aun A

MB?‘ Ay An |

Multiplying the minor by (—1)>"3 = (—=1)° = —1 gives

Ay An

. <4
Az An

C23=—‘

We now define a determinant as the sum of the products of the elements of any
row or column and their corresponding cofactors, €.g. A21Car1 + A2 Cay + A3Ca3 or
A13C13+ A23Ca3 4+ A33Cs3. Such a sum is called a Laplace expansion. For example,
in the first of these expansions, using the elements of the second row of the
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determinant defined by (8.45) and their corresponding cofactors, we write |A| as
the Laplace expansion

|A‘ = Azl(_l)(2+1)M21 + A22(—1)(2+2)M22 + A23(—1)(2+3)M23
A A Ay A Al An

=—A
M oAn Ay A3z Az A3z Axn

+ An —Ax

We will see later that the value of the determinant is independent of the row
or column chosen. Of course, we have not yet determined the value of |A| but,
rather, written it as the weighted sum of three determinants of order 2. However,
applying again the definition of a determinant, we can evaluate each of the
order-2 determinants.

» Evaluate the determinant
A Ap
Az A3

By considering the products of the elements of the first row in the determinant, and their
corresponding cofactors, we find

‘ A A

A A = Ap(—1)" | As3] 4+ A13(—1)12 | A3, |

= ApAs — AizAs,

where the values of the order-1 determinants |A33| and |A3;| are defined to be A3; and 43,
respectively. It must be remembered that the determinant is not the same as the modulus,
e.g. det (—2)=|—2|=—-2,not2. «

We can now combine all the above results to show that the value of the
determinant (8.45) is given by

|A| = —A1(A12A33 — A13A32) + An(A11433 — A13A431)

— Ax(An1As — Andas) (8.46)
= A11(AnAs; — Ax3A3) + A12(Ax A3 — A1 433)
+ A13(A21 432 — AnAsr), (8.47)

where the final expression gives the form in which the determinant is usually
remembered and is the form that is obtained immediately by considering the
Laplace expansion using the first row of the determinant. The last equality, which
essentially rearranges a Laplace expansion using the second row into one using
the first row, supports our assertion that the value of the determinant is unaffected
by which row or column is chosen for the expansion.
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» Suppose the rows of a real 3 x 3 matrix A are interpreted as the components in a given
basis of three (three-component ) vectors a, b and ¢. Show that one can write the determinant
of A as

|Al=a- (b xc).

If one writes the rows of A as the components in a given basis of three vectors a, b and c,
we have from (8.47) that

a [25} as
|Al=1] b1 by b3 | =ai(bics —bscs) + ax(bscy — bics) + az(bicy — bacy).

¢ € €3

From expression (7.34) for the scalar triple product given in subsection 7.6.3, it follows
that we may write the determinant as
|Al=a- (b xc). (8.48)

In other words, |A| is the volume of the parallelepiped defined by the vectors a, b and
¢. (One could equally well interpret the columns of the matrix A as the components of
three vectors, and result (8.48) would still hold.) This result provides a more memorable
(and more meaningful) expression than (8.47) for the value of a 3 x 3 determinant. Indeed,
using this geometrical interpretation, we see immediately that, if the vectors ay, a,, a3 are
not linearly independent then the value of the determinant vanishes: |A] = 0. <«

The evaluation of determinants of order greater than 3 follows the same general
method as that presented above, in that it relies on successively reducing the order
of the determinant by writing it as a Laplace expansion. Thus, a determinant
of order 4 is first written as a sum of four determinants of order 3, which
are then evaluated using the above method. For higher-order determinants, one
cannot write down directly a simple geometrical expression for |A| analogous to
that given in (8.48). Nevertheless, it is still true that if the rows or columns of
the N x N matrix A are interpreted as the components in a given basis of N
(N-component) vectors aj,a,...,ay, then the determinant |A| vanishes if these
vectors are not all linearly independent.

8.9.1 Properties of determinants

A number of properties of determinants follow straightforwardly from the defini-
tion of det A; their use will often reduce the labour of evaluating a determinant.
We present them here without specific proofs, though they all follow readily from
the alternative form for a determinant, given in equation (26.29) on page 942,
and expressed in terms of the Levi-Civita symbol e;j, (see exercise 26.9).

(i) Determinant of the transpose. The transpose matrix AT (which, we recall,
is obtained by interchanging the rows and columns of A) has the same
determinant as A itself, i.e.

|AT| = |A. (8.49)
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(ii)

(iif)

(iv)

(vi)

(vii)

It follows that any theorem established for the rows of A will apply to the
columns as well, and vice versa.

Determinant of the complex and Hermitian conjugate. It is clear that the
matrix A" obtained by taking the complex conjugate of each element of A
has the determinant |A*| = |A|". Combining this result with (8.49), we find
that

AT = |(A)T] = |A"| = |A]". (8.50)

Interchanging two rows or two columns. If two rows (columns) of A are
interchanged, its determinant changes sign but is unaltered in magnitude.
Removing factors. If all the elements of a single row (column) of A have
a common factor, 4, then this factor may be removed; the value of the
determinant is given by the product of the remaining determinant and /.
Clearly this implies that if all the elements of any row (column) are zero
then |A] = 0. It also follows that if every element of the N x N matrix A
is multiplied by a constant factor 4 then

|2A] = AN|A]. (8.51)

Identical rows or columns. If any two rows (columns) of A are identical or
are multiples of one another, then it can be shown that |A| = 0.

Adding a constant multiple of one row (column) to another. The determinant
of a matrix is unchanged in value by adding to the elements of one row
(column) any fixed multiple of the elements of another row (column).

Determinant of a product. If A and B are square matrices of the same order
then

|AB| = |A||B| = |BA|. (8.52)
A simple extension of this property gives, for example,
|AB -Gl = A|[B- |Gl = |AIG|--+[B] = |A---GB,

which shows that the determinant is invariant under permutation of the
matrices in a multiple product.

There is no explicit procedure for using the above results in the evaluation of
any given determinant, and judging the quickest route to an answer is a matter

of experience. A general guide is to try to reduce all terms but one in a row or

column to zero and hence in effect to obtain a determinant of smaller size. The

steps taken in evaluating the determinant in the example below are certainly not
the fastest, but they have been chosen in order to illustrate the use of most of the
properties listed above.
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» Evaluate the determinant

1 0 2 3
0o 1 -2 1
Al=1 3 3 4 2

-2 1 =2 -1

Taking a factor 2 out of the third column and then adding the second column to the third
gives

1 0 1 3 1 0 1 3
a=2l 3 L5 L=l L0
-2 1 -1 -1 -2 1 0o -1
Subtracting the second column from the fourth gives
1 0 1 3
x0T

-2 1 0 -2
We now note that the second row has only one non-zero element and so the determinant
may conveniently be written as a Laplace expansion, i.e.
1 1 3 4 0 4
Al=2x1x(=1)*| 3 -1 1 |=2| 3 -1 1
-2 0 =2 -2 0 =2

>

where the last equality follows by adding the second row to the first. It can now be seen
that the first row is minus twice the third, and so the value of the determinant is zero, by
property (v) above. <

8.10 The inverse of a matrix

Our first use of determinants will be in defining the inverse of a matrix. If we
were dealing with ordinary numbers we would consider the relation P = AB as
equivalent to B = P/A, provided that A # 0. However, if A, B and P are matrices
then this notation does not have an obvious meaning. What we really want to
know is whether an explicit formula for B can be obtained in terms of A and
P. It will be shown that this is possible for those cases in which |[A|] # 0. A
square matrix whose determinant is zero is called a singular matrix; otherwise it
is non-singular. We will show that if A is non-singular we can define a matrix,
denoted by A~! and called the inverse of A, which has the property that if AB = P
then B = A~!P. In words, B can be obtained by multiplying P from the left by
A~!. Analogously, if B is non-singular then, by multiplication from the right,
A=PB!
It is clear that

Al=A = |=A"lA (8.53)

where | is the unit matrix, and so A"'!A = | = AA~!. These statements are
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equivalent to saying that if we first multiply a matrix, B say, by A and then
multiply by the inverse A~!, we end up with the matrix we started with, i..

A~'AB = B. (8.54)

This justifies our use of the term inverse. It is also clear that the inverse is only
defined for square matrices.

So far we have only defined what we mean by the inverse of a matrix. Actually
finding the inverse of a matrix A may be carried out in a number of ways. We will
show that one method is to construct first the matrix C containing the cofactors
of the elements of A, as discussed in the last subsection. Then the required inverse
A~! can be found by forming the transpose of C and dividing by the determinant
of A. Thus the elements of the inverse A~ are given by

©) _ Cu

-1y, — ik _ ki
(A7) Al Al (8.55)

That this procedure does indeed result in the inverse may be seen by considering
the components of A~'A, ie.

Cii 4
(A*‘A)f,/=2( )it (A Z\Kl }%:51-,. (8.56)
k

The last equality in (8.56) relies on the property

chlAkj IA‘&]’ (857)

this can be proved by considering the matrix A" obtained from the original matrix
A when the ith column of A is replaced by one of the other columns, say the jth.
Thus A’ is a matrix with two identical columns and so has zero determinant.
However, replacing the ith column by another does not change the cofactors Cy;
of the elements in the ith column, which are therefore the same in A and A'.
Recalling the Laplace expansion of a determinant, i.e.

|Al = ZAkiCki’
k

we obtain

0=IA=Y AuCli=> AyCu» i#],
k k

which together with the Laplace expansion itself may be summarised by (8.57).
It is immediately obvious from (8.55) that the inverse of a matrix is not defined
if the matrix is singular (i.e. if |A| = 0).
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» Find the inverse of the matrix

We first determine |A|:

|Al = 2[=2(2) = (=2)3] + 4[(—2)(=3) — ()(2)] + 3[(1)(3) — (=2)(-3)]
=11. (8.58)

This is non-zero and so an inverse matrix can be constructed. To do this we need the
matrix of the cofactors, C, and hence C'. We find

2 4 =3 2 1 =2
C= 1 13 I8 and C"= 4 13 7 R
-2 7 =8 -3 —-18 =8

T I
Am=C Ly 3 7] < (8.59)
3 _18 -8

and hence

For a 2 x 2 matrix, the inverse has a particularly simple form. If the matrix is

Ay A )
A=
( Ay Ax

then its determinant |A| is given by |A| = A114» — A1pA>1, and the matrix of

cofactors is
Ap  —An )
C= .
( —Apn An
Thus the inverse of A is given by

c’ 1 Ay  —An )
Al — = —————— - : 8.60
Al A11An — ApAxn ( —Ay  An (8.60)

It can be seen that the transposed matrix of cofactors for a 2 x 2 matrix is the
same as the matrix formed by swapping the elements on the leading diagonal
(A1; and Aj;) and changing the signs of the other two elements (A;; and Ay).
This is completely general for a 2 x 2 matrix and is easy to remember.

The following are some further useful properties related to the inverse matrix
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and may be straightforwardly derived.

i A T=A

(i) (AT = (ATHT.

(iii) (AT = (AT

(iv) (AB)~! = B AL

(v) (AB---G)"'=G!...B 1AL

» Prove the properties (1)—(v) stated above. |

We begin by writing down the fundamental expression defining the inverse of a non-
singular square matrix A:

AA"' =1=A"A (8.61)
Property (i). This follows immediately from the expression (8.61).
Property (ii). Taking the transpose of each expression in (8.61) gives
(AAYT =1T = (A~ 'A)T.
Using the result (8.39) for the transpose of a product of matrices and noting that IT = |,
we find
(A—I)TAT == AT(A_I)T.
However, from (8.61), this implies (A~")T = (AT)~! and hence proves result (ii) above.
Property (iii). This may be proved in an analogous way to property (ii), by replacing the
transposes in (ii) by Hermitian conjugates and using the result (8.40) for the Hermitian

conjugate of a product of matrices.
Property (iv). Using (8.61), we may write

(AB)(AB)™! = | = (AB)"'(AB),
From the left-hand equality it follows, by multiplying on the left by A~!, that
A-'AB(AB)"!' = A1l and hence B(AB)™! = AL

Now multiplying on the left by B~! gives
B-!B(AB)"! =B A",
and hence the stated result.

Property (v). Finally, result (iv) may extended to case (v) in a straightforward manner.
For example, using result (iv) twice we find

(ABC)~! = (BC)"!A! = CIB1A"!. <

We conclude this section by noting that the determinant |A~!| of the inverse
matrix can be expressed very simply in terms of the determinant |A| of the matrix
itself. Again we start with the fundamental expression (8.61). Then, using the
property (8.52) for the determinant of a product, we find

[AAT! = |A[ATY =11].

It is straightforward to show by Laplace expansion that |I| = 1, and so we arrive
at the useful result
1

A~ = —. (8.62)
|A|
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8.11 The rank of a matrix

The rank of a general M x N matrix is an important concept, particularly in
the solution of sets of simultaneous linear equations, to be discussed in the next
section, and we now discuss it in some detail. Like the trace and determinant,
the rank of matrix A is a single number (or algebraic expression) that depends
on the elements of A. Unlike the trace and determinant, however, the rank of a
matrix can be defined even when A is not square. As we shall see, there are two
equivalent definitions of the rank of a general matrix.

Firstly, the rank of a matrix may be defined in terms of the linear independence
of vectors. Suppose that the columns of an M x N matrix are interpreted as
the components in a given basis of N (M-component) vectors vi,Va,...,Vy, as
follows:

T 7
A= Vi V2 ... VN
L 1

Then the rank of A, denoted by rank A or by R(A), is defined as the number
of linearly independent vectors in the set vi,v,,...,vy, and equals the dimension
of the vector space spanned by those vectors. Alternatively, we may consider the
rows of A to contain the components in a given basis of the M (N-component)
vectors wi, wa, ..., Wy as follows:

— W -

— W —

— Wy —

It may then be shown' that the rank of A is also equal to the number of
linearly independent vectors in the set wy,wo,...,w),. From this definition it is
should be clear that the rank of A is unaffected by the exchange of two rows
(or two columns) or by the multiplication of a row (or column) by a constant.
Furthermore, suppose that a constant multiple of one row (column) is added to
another row (column): for example, we might replace the row w; by w; + cw;.
This also has no effect on the number of linearly independent rows and so leaves
the rank of A unchanged. We may use these properties to evaluate the rank of a
given matrix.

A second (equivalent) definition of the rank of a matrix may be given and uses
the concept of submatrices. A submatrix of A is any matrix that can be formed
from the elements of A by ignoring one, or more than one, row or column. It

§ For a fuller discussion, see, for example, C. D. Cantrell, Modern Mathematical Methods for Physicists
and Engineers (Cambridge: Cambridge University Press, 2000), chapter 6.
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may be shown that the rank of a general M x N matrix is equal to the size of
the largest square submatrix of A whose determinant is non-zero. Therefore, if a
matrix A has an r X r submatrix S with |S| # 0, but no (r + 1) X (r + 1) submatrix
with non-zero determinant then the rank of the matrix is r. From either definition
it is clear that the rank of A is less than or equal to the smaller of M and N.

» Determine the rank of the matrix

0 -2
2 2
3

1 1
A=| 2 O
4 1 1

The largest possible square submatrices of A must be of dimension 3 x 3. Clearly, A
possesses four such submatrices, the determinants of which are given by

110 11 -2
2.0 2|=o0, 20 2 |=o
4 1 3 4 1 1
1 0 —2 10 -2
22 2 |=o 02 2 |=o
4 3 1 13 1

(In each case the determinant may be evaluated as described in subsection 8.9.1.)

The next largest square submatrices of A are of dimension 2 x 2. Consider, for example,
the 2 x 2 submatrix formed by ignoring the third row and the third and fourth columns
of A; this has determinant

11
20

‘=1><0—2><1=—2.

Since its determinant is non-zero, A is of rank 2 and we need not consider any other 2 x 2
submatrix. <«

In the special case in which the matrix A is a square N X N matrix, by comparing
either of the above definitions of rank with our discussion of determinants in
section 8.9, we see that |A| = 0 unless the rank of A is N. In other words, A is
singular unless R(A) = N.

8.12 Special types of square matrix

Matrices that are square, i.e. N X N, are very common in physical applications.
We now consider some special forms of square matrix that are of particular
importance.

8.12.1 Diagonal matrices

The unit matrix, which we have already encountered, is an example of a diagonal
matrix. Such matrices are characterised by having non-zero elements only on the
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leading diagonal, i.e. only elements 4;; with i = j may be non-zero. For example,

10 0
A= 0 2 0 ,
0 0 =3

is a 3 x 3 diagonal matrix. Such a matrix is often denoted by A = diag (1,2, —3).
By performing a Laplace expansion, it is easily shown that the determinant of an
N x N diagonal matrix is equal to the product of the diagonal elements. Thus, if
the matrix has the form A = diag(A,42,...,Ayn) then

|A] = A1 An - ANN- (8.63)

Moreover, it is also straightforward to show that the inverse of A is also a
diagonal matrix given by

1 1 1
Al = dia (_,_,...,_) .
g A Ax AnN
Finally, we note that, if two matrices A and B are both diagonal then they have
the useful property that their product is commutative:

AB = BA.

This is not true for matrices in general.

8.12.2 Lower and upper triangular matrices

A square matrix A is called lower triangular if all the elements above the principal
diagonal are zero. For example, the general form for a 3 x 3 lower triangular
matrix is

Ay O 0
A= Ay Ax 0 >
Az1 Az Asn

where the elements A4;; may be zero or non-zero. Similarly an upper triangular
square matrix is one for which all the elements below the principal diagonal are
zero. The general 3 x 3 form is thus

Ay A A
A= 0 Axpn Ax
0 0 A

By performing a Laplace expansion, it is straightforward to show that, in the
general N x N case, the determinant of an upper or lower triangular matrix is
equal to the product of its diagonal elements,

|Al = A11A»n - - ANN- (8.64)
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Clearly result (8.63) for diagonal matrices is a special case of this result. Moreover,
it may be shown that the inverse of a non-singular lower (upper) triangular matrix
is also lower (upper) triangular.

8.12.3 Symmetric and antisymmetric matrices

A square matrix A of order N with the property A = AT is said to be symmetric.
Similarly a matrix for which A = —AT is said to be anti- or skew-symmetric
and its diagonal elements ay, a2, ...,ayn are necessarily zero. Moreover, if A is
(anti-)symmetric then so too is its inverse A~!. This is easily proved by noting
that if A = +AT then

(Afl)T — (AT)fl — iAfl.

Any N x N matrix A can be written as the sum of a symmetric and an
antisymmetric matrix, since we may write

A=iA+AT)+LA-AT)=B+C,

where clearly B = BT and C = —CT. The matrix B is therefore called the
symmetric part of A, and C is the antisymmetric part.

|>IfA is an N X N antisymmetric matrix, show that |A| = 0 if N is odd.

If A is antisymmetric then AT = —A. Using the properties of determinants (8.49) and
(8.51), we have

Al =|AT| == Al = (=1)"|A].
Thus, if N is odd then |A] = —|A|, which implies that |A| = 0. «

8.12.4 Orthogonal matrices
A non-singular matrix with the property that its transpose is also its inverse,
AT = AL (8.65)

is called an orthogonal matrix. It follows immediately that the inverse of an
orthogonal matrix is also orthogonal, since

(Afl)T — (AT)—I — (A—l)—l‘
Moreover, since for an orthogonal matrix ATA =1, we have
IATA| = |AT[|A] = [AP = [l = L.

Thus the determinant of an orthogonal matrix must be |A| = +1.
An orthogonal matrix represents, in a particular basis, a linear operator that
leaves the norms (lengths) of real vectors unchanged, as we will now show.
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Suppose that y = Ax is represented in some coordinate system by the matrix
equation y = Ax; then (y|y) is given in this coordinate system by

yly = xTATAX = xx.

Hence (y|y) = (x|x), showing that the action of a linear operator represented by
an orthogonal matrix does not change the norm of a real vector.

8.12.5 Hermitian and anti-Hermitian matrices

An Hermitian matrix is one that satisfies A = A", where A' is the Hermitian conju-
gate discussed in section 8.7. Similarly if AT = —A, then A is called anti-Hermitian.
A real (anti-)symmetric matrix is a special case of an (anti-)Hermitian matrix, in
which all the elements of the matrix are real. Also, if A is an (anti-)Hermitian
matrix then so too is its inverse A~!, since

(AT = (A =£AL
Any N x N matrix A can be written as the sum of an Hermitian matrix and
an anti-Hermitian matrix, since
A=iA+A)+LA-A)=B+C,

where clearly B = B and C = —C'. The matrix B is called the Hermitian part of
A, and C is called the anti-Hermitian part.

8.12.6 Unitary matrices
A unitary matrix A is defined as one for which
Af = A1, (8.66)
Clearly, if A is real then A" = AT, showing that a real orthogonal matrix is a
special case of a unitary matrix, one in which all the elements are real. We note
that the inverse A~! of a unitary is also unitary, since
(AT =AY = (AT
Moreover, since for a unitary matrix ATA = I, we have
ATA| = |ATI|A| = |A["|A] = |I| = 1.

Thus the determinant of a unitary matrix has unit modulus.

A unitary matrix represents, in a particular basis, a linear operator that leaves
the norms (lengths) of complex vectors unchanged. If y = Ax is represented in
some coordinate system by the matrix equation y = Ax then (y|y) is given in this
coordinate system by

yTy = x"ATAx = xx.
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Hence (y|y) = (x|x), showing that the action of the linear operator represented by
a unitary matrix does not change the norm of a complex vector. The action of a
unitary matrix on a complex column matrix thus parallels that of an orthogonal
matrix acting on a real column matrix.

8.12.7 Normal matrices
A final important set of special matrices consists of the normal matrices, for which
AAT = ATA,
i.e. a normal matrix is one that commutes with its Hermitian conjugate.
We can easily show that Hermitian matrices and unitary matrices (or symmetric

matrices and orthogonal matrices in the real case) are examples of normal
matrices. For an Hermitian matrix, A = AT and so

AAT = AA = ATA.
Similarly, for a unitary matrix, A~' = AT and so
AAT = AATT = ATTA = ATA
Finally, we note that, if A is normal then so too is its inverse A~!, since
ATHATH = ATHAT) T = (ATA) T = (AAT) ! = (AT)TATT = (ATH)TATL

This broad class of matrices is important in the discussion of eigenvectors and
eigenvalues in the next section.

8.13 Eigenvectors and eigenvalues

Suppose that a linear operator A transforms vectors x in an N-dimensional
vector space into other vectors .4 x in the same space. The possibility then arises
that there exist vectors x each of which is transformed by A into a multiple of
itself. Such vectors would have to satisfy

AX = JX. (8.67)

Any non-zero vector x that satisfies (8.67) for some value of 4 is called an
eigenvector of the linear operator 4, and / is called the corresponding eigenvalue.
As will be discussed below, in general the operator A has N independent
eigenvectors x', with eigenvalues /;. The 4; are not necessarily all distinct.

If we choose a particular basis in the vector space, we can write (8.67) in terms
of the components of A and x with respect to this basis as the matrix equation

Ax = Ix, (8.68)

where A is an N x N matrix. The column matrices x that satisfy (8.68) obviously
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represent the eigenvectors x of A in our chosen coordinate system. Convention-
ally, these column matrices are also referred to as the eigenvectors of the matrix
AS Clearly, if x is an eigenvector of A (with some eigenvalue ) then any scalar
multiple pux is also an eigenvector with the same eigenvalue. We therefore often
use normalised eigenvectors, for which

x'x =1

(note that x"x corresponds to the inner product (x|x) in our basis). Any eigen-
vector x can be normalised by dividing all its components by the scalar (x'x)!/2.

As will be seen, the problem of finding the eigenvalues and corresponding
eigenvectors of a square matrix A plays an important role in many physical
investigations. Throughout this chapter we denote the ith eigenvector of a square
matrix A by x and the corresponding eigenvalue by /;. This superscript notation
for eigenvectors is used to avoid any confusion with components.

» A non-singular matrix A has eigenvalues 1; and eigenvectors x'. Find the eigenvalues and
eigenvectors of the inverse matrix A~

The eigenvalues and eigenvectors of A satisfy
Ax' = J;x\.
Left-multiplying both sides of this equation by A=, we find
ATAX = LAY,
Since A~'A =1, on rearranging we obtain
. 1 .

AlX = Z_x'.
Thus, we see that A~' has the same eigenvectors x' as does A, but the corresponding
eigenvalues are 1/4;. <

In the remainder of this section we will discuss some useful results concerning
the eigenvectors and eigenvalues of certain special (though commonly occurring)
square matrices. The results will be established for matrices whose elements may
be complex; the corresponding properties for real matrices may be obtained as
special cases.

8.13.1 Eigenvectors and eigenvalues of a normal matrix

In subsection 8.12.7 we defined a normal matrix A as one that commutes with its
Hermitian conjugate, so that

ATA = AAT,

§ In this context, when referring to linear combinations of eigenvectors x we will normally use the
term ‘vector’.
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We also showed that both Hermitian and unitary matrices (or symmetric and
orthogonal matrices in the real case) are examples of normal matrices. We now
discuss the properties of the eigenvectors and eigenvalues of a normal matrix.

If x is an eigenvector of a normal matrix A with corresponding eigenvalue 4
then Ax = /x, or equivalently,

(A—x = 0. (8.69)

Denoting B = A— I, (8.69) becomes Bx = 0 and, taking the Hermitian conjugate,
we also have

(Bx)" =x"Bf = 0. (8.70)

From (8.69) and (8.70) we then have
x'B'Bx = 0. (8.71)
However, the product B'B is given by
B'B=(A—A)(A—il)= (AT =2)A—=2)=ATA— 1A —2AT + 20"
Now since A is normal, AA" = ATA and so
BB = AAT — 2*A — JAT 4+ 10" = (A — AI)(A — A1) = BBT,
and hence B is also normal. From (8.71) we then find
x'BBx = x'BBTx = (Bfx)'Bx = 0,
from which we obtain
Bfx = (AT —2*)x = 0.

Therefore, for a normal matrix A, the eigenvalues of At are the complex conjugates
of the eigenvalues of A.

Let us now consider two eigenvectors x' and x/ of a normal matrix A corre-
sponding to two different eigenvalues 4; and 4;. We then have

Axi = J;xi, (8.72)
Ax) = Jx. (8.73)

Multiplying (8.73) on the left by (x')" we obtain
(X AX) = 2;(x")Tx/. (8.74)
However, on the LHS of (8.74) we have
(x)'A = (ATX)" = (27 x)T = J4(x)T, (8.75)
where we have used (8.40) and the property just proved for a normal matrix to
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write ATx' = 2’x!. From (8.74) and (8.75) we have
(4 — A))(x) % = 0. (8.76)

Thus, if 4; # 4; the eigenvectors x' and x/ must be orthogonal, i.e. (x')'x/ = 0.

It follows immediately from (8.76) that if all N eigenvalues of a normal matrix
A are distinct then all N eigenvectors of A are mutually orthogonal. If, however,
two or more eigenvalues are the same then further consideration is required. An
eigenvalue corresponding to two or more different eigenvectors (i.e. they are not
simply multiples of one another) is said to be degenerate. Suppose that 7, is k-fold
degenerate, i.c.

AX = Jx fori=12,...k (8.77)

but that it is different from any of Ax1y, 442, etc. Then any linear combination
of these x is also an eigenvector with eigenvalue /i, since, for z = ZLI cix,

k

k k
Az=AY ex' =) cAX =) chix =iz (8.78)
i=1 i=1 i=1

If the x' defined in (8.77) are not already mutually orthogonal then we can
construct new eigenvectors z' that are orthogonal by the following procedure:

22— y2_ [(21)Tx2] 21’

R [(22)1‘)(3] 52 _ [(21)*x3] 5!

zk _ Xk _ [(ik—l)'}'xk] ﬁk_l L [(21)'}'ij| 21‘

In this procedure, known as Gram—Schmidt orthogonalisation, each new eigen-
vector ! is normalised to give the unit vector 2 before proceeding to the construc-
tion of the next one (the normalisation is carried out by dividing each element of
the vector Z' by [(z')Z]'/?). Note that each factor in brackets (2")'x" is a scalar
product and thus only a number. It follows that, as shown in (8.78), each vector
Z' so constructed is an eigenvector of A with eigenvalue 4; and will remain so
on normalisation. It is straightforward to check that, provided the previous new
eigenvectors have been normalised as prescribed, each z' is orthogonal to all its
predecessors. (In practice, however, the method is laborious and the example in
subsection 8.14.1 gives a less rigorous but considerably quicker way.)

Therefore, even if A has some degenerate eigenvalues we can by construction
obtain a set of N mutually orthogonal eigenvectors. Moreover, it may be shown
(although the proof is beyond the scope of this book) that these eigenvectors
are complete in that they form a basis for the N-dimensional vector space. As
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a result any arbitrary vector y can be expressed as a linear combination of the
eigenvectors x':

N
y=>ax, (8.79)
i=1
where a; = (x)'y. Thus, the eigenvectors form an orthogonal basis for the vector
space. By normalising the eigenvectors so that (x)'x’ = 1 this basis is made
orthonormal.

»Show that a normal matrix A can be written in terms of its eigenvalues /; and orthonormal
eigenvectors X' as

N
A=Y XX, (8.80)

i=

The key to proving the validity of (8.80) is to show that both sides of the expression give
the same result when acting on an arbitary vector y. Since A is normal, we may expand y
in terms of the eigenvectors x', as shown in (8.79). Thus, we have

N N
Ay = A Z ax = Z ailix.
=1 i1

Alternatively, the action of the RHS of (8.80) on y is given by

N N
Z Aix (x)y = Z ailix',
i=1 i=1

since a; = (x')Ty. We see that the two expressions for the action of each side of (8.80) on y
are identical, which implies that this relationship is indeed correct. <«

8.13.2 Eigenvectors and eigenvalues of Hermitian and anti-Hermitian matrices

For a normal matrix we showed that if Ax = Ax then Afx = 1"x. However, if A is
also Hermitian, A = AT, it follows necessarily that 2 = 2*. Thus, the eigenvalues
of an Hermitian matrix are real, a result which may be proved directly.

» Prove that the eigenvalues of an Hermitian matrix are real. |

For any particular eigenvector x’, we take the Hermitian conjugate of Ax' = 2;x' to give
O)AT = 25 (x). (8.81)

Using A" = A, since A is Hermitian, and multiplying on the right by x’, we obtain

(X AX = 17 (x))Tx'. (8.82)
But multiplying Ax' = 4;x' through on the left by (x')" gives

(X AX = 2;(x") X
Subtracting this from (8.82) yields

0= (2 — 4)(x)x.
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But (x')*x' is the modulus squared of the non-zero vector x' and is thus non-zero. Hence
/; must equal 4; and thus be real. The same argument can be used to show that the
eigenvalues of a real symmetric matrix are themselves real. <

The importance of the above result will be apparent to any student of quantum
mechanics. In quantum mechanics the eigenvalues of operators correspond to
measured values of observable quantities, e.g. energy, angular momentum, parity
and so on, and these clearly must be real. If we use Hermitian operators to
formulate the theories of quantum mechanics, the above property guarantees
physically meaningful results.

Since an Hermitian matrix is also a normal matrix, its eigenvectors are orthog-
onal (or can be made so using the Gram—Schmidt orthogonalisation procedure).
Alternatively we can prove the orthogonality of the eigenvectors directly.

» Prove that the eigenvectors corresponding to different eigenvalues of an Hermitian matrix
are orthogonal.

Consider two unequal eigenvalues 4; and 4; and their corresponding eigenvectors satisfying
Ax' = X, (8.83)
Ax) = 2;x]. (8.84)
Taking the Hermitian conjugate of (8.83) we find (x')’A" = 27(x'). Multiplying this on the
right by x/ we obtain
() AT = 27 (x)Tx/,
and similarly multiplying (8.84) through on the left by (x')" we find
(X)) AX = 2,;(x")Tx/.
Then, since A" = A, the two left-hand sides are equal and, because the A; are real, on
subtraction we obtain

0= (4 —2;)(x)x/.

Finally we note that 4; # 4; and so (x)'x/ = 0, ie. the eigenvectors x' and x/ are
orthogonal. <

In the case where some of the eigenvalues are equal, further justification of the
orthogonality of the eigenvectors is needed. The Gram—Schmidt orthogonalisa-
tion procedure discussed above provides a proof of, and a means of achieving,
orthogonality. The general method has already been described and we will not
repeat it here.

We may also consider the properties of the eigenvalues and eigenvectors of an
anti-Hermitian matrix, for which A" = —A and thus

AAT = A(—=A) = (—A)A = ATA.

Therefore matrices that are anti-Hermitian are also normal and so have mutu-
ally orthogonal eigenvectors. The properties of the eigenvalues are also simply
deduced, since if Ax = Ax then

Ax = ATx = —Ax = —Ix.
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Hence 2* = —1 and so 4 must be pure imaginary (or zero). In a similar manner
to that used for Hermitian matrices, these properties may be proved directly.

8.13.3 Eigenvectors and eigenvalues of a unitary matrix

A unitary matrix satisfies AT = A~! and is also a normal matrix, with mutually
orthogonal eigenvectors. To investigate the eigenvalues of a unitary matrix, we
note that if Ax = Ax then

x'x = x"ATAx = 1" AxTx,

and we deduce that 22* = |1]> = 1. Thus, the eigenvalues of a unitary matrix
have unit modulus.

8.13.4 Eigenvectors and eigenvalues of a general square matrix

When an N x N matrix is not normal there are no general properties of its
eigenvalues and eigenvectors; in general it is not possible to find any orthogonal
set of N eigenvectors or even to find pairs of orthogonal eigenvectors (except
by chance in some cases). While the N non-orthogonal eigenvectors are usually
linearly independent and hence form a basis for the N-dimensional vector space,
this is not necessarily so. It may be shown (although we will not prove it) that any
N x N matrix with distinct eigenvalues has N linearly independent eigenvectors,
which therefore form a basis for the N-dimensional vector space. If a general
square matrix has degenerate eigenvalues, however, then it may or may not have
N linearly independent eigenvectors. A matrix whose eigenvectors are not linearly
independent is said to be defective.

8.13.5 Simultaneous eigenvectors

We may now ask under what conditions two different normal matrices can have
a common set of eigenvectors. The result — that they do so if, and only if, they
commute — has profound significance for the foundations of quantum mechanics.

To prove this important result let A and B be two N x N normal matrices and
x! be the ith eigenvector of A corresponding to eigenvalue 4, i.e.

Ax = Jxt for i=1,2,...,N.

For the present we assume that the eigenvalues are all different.
(i) First suppose that A and B commute. Now consider

ABx = BAX' = BAx' = /;Bx/,

where we have used the commutativity for the first equality and the eigenvector
property for the second. It follows that A(Bx') = 4;(Bx’) and thus that Bx' is an
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eigenvector of A corresponding to eigenvalue /;. But the eigenvector solutions of
(A —Z;)x' = 0 are unique to within a scale factor, and we therefore conclude that

Bx' = p;x!

for some scale factor y;. However, this is just an eigenvector equation for B and
shows that x' is an eigenvector of B, in addition to being an eigenvector of A. By
reversing the roles of A and B, it also follows that every eigenvector of B is an
eigenvector of A. Thus the two sets of eigenvectors are identical.

(i) Now suppose that A and B have all their eigenvectors in common, a typical
one x' satisfying both

Ax'=;x' and Bx = px.

As the eigenvectors span the N-dimensional vector space, any arbitrary vector x
in the space can be written as a linear combination of the eigenvectors,

N
X = E ¢ix'.
i=1

Now consider both

N N N
ABx = AB Z cixt = AZ Xt = Z cidihix’,
i=1 i=1

i=1

and
N N N
BAx = BAZ cx =B Z cidix = Zci,ui}vixi.
i=1 i=1 i=1
It follows that ABx and BAx are the same for any arbitrary x and hence that

(AB—BA)x =0

for all x. That is, A and B commute.

This completes the proof that a necessary and sufficient condition for two
normal matrices to have a set of eigenvectors in common is that they commute.
It should be noted that if an eigenvalue of A, say, is degenerate then not all of
its possible sets of eigenvectors will also constitute a set of eigenvectors of B.
However, provided that by taking linear combinations one set of joint eigenvectors
can be found, the proof is still valid and the result still holds.

When extended to the case of Hermitian operators and continuous eigenfunc-
tions (sections 17.2 and 17.3) the connection between commuting matrices and
a set of common eigenvectors plays a fundamental role in the postulatory basis
of quantum mechanics. It draws the distinction between commuting and non-
commuting observables and sets limits on how much information about a system
can be known, even in principle, at any one time.
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8.14 Determination of eigenvalues and eigenvectors

The next step is to show how the eigenvalues and eigenvectors of a given N x N
matrix A are found. To do this we refer to (8.68) and as in (8.69) rewrite it as

Ax—Ax =(A—A)x =0. (8.85)

The slight rearrangement used here is to write x as Ix, where | is the unit matrix
of order N. The point of doing this is immediate since (8.85) now has the form
of a homogeneous set of simultaneous equations, the theory of which will be
developed in section 8.18. What will be proved there is that the equation Bx = 0
only has a non-trivial solution x if |B| = 0. Correspondingly, therefore, we must
have in the present case that

IA—Jl| =0, (8.86)

if there are to be non-zero solutions x to (8.85).

Equation (8.86) is known as the characteristic equation for A and its LHS as
the characteristic or secular determinant of A. The equation is a polynomial of
degree N in the quantity 2. The N roots of this equation /;, i = 1,2,..., N, give
the eigenvalues of A. Corresponding to each /; there will be a column vector x/,
which is the ith eigenvector of A and can be found by using (8.68).

It will be observed that when (8.86) is written out as a polynomial equation in
J, the coefficient of —AY~! in the equation will be simply A1; + Ay + -+ + Ayy
relative to the coefficient of AV. As discussed in section 8.8, the quantity Zf\i 1 Aii
is the trace of A and, from the ordinary theory of polynomial equations, will be
equal to the sum of the roots of (8.86):

N
> hi=TrA (8.87)
i=1

This can be used as one check that a computation of the eigenvalues 4; has been
done correctly. Unless equation (8.87) is satisfied by a computed set of eigenvalues,
they have not been calculated correctly. However, that equation (8.87) is satisfied is
a necessary, but not sufficient, condition for a correct computation. An alternative
proof of (8.87) is given in section 8.16.

» Find the eigenvalues and normalised eigenvectors of the real symmetric matrix

1 1 3
A= 1 1 =3 |.
3 =3 =3

Using (8.86),
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Expanding out this determinant gives
T=ADIM=2(=3=24)—(=3)(=3)]+ 1 [(-3)3) — L(=3—2)]
+3[(=3)—(1—-AB)] =0,
which simplifies to give
(1= +24—12) + (2 —6) + 3(3.—6) =0,
= (A=2)(A=3)(A+6)=0.
Hence the roots of the characteristic equation, which are the eigenvalues of A, are 4; = 2,
Ay =3, /3 = —6. We note that, as expected,
Mttt ls=—1=1+1-3=A4;1+An+A3=TrA
For the first root, 2; = 2, a suitable eigenvector x', with elements xi, x,, X3, must satisfy
Ax! = 2x! or, equivalently,
X1+ x2 + 3x3 = 2xy,
X1+ X2 — 3x3 = 2x,, (8.88)
3x; — 3xy — 3x3 = 2x3.
These three equations are consistent (to ensure this was the purpose in finding the particular

values of 1) and yield x; = 0, x; = x, = k, where k is any non-zero number. A suitable
eigenvector would thus be

xX'=k k 0.
If we apply the normalisation condition, we require k> + k> + 0% = 1 or k = 1/,/2. Hence
11 T .
— — 0) =—(1 1 0).
(F 5o -poro
Repeating the last paragraph, but with the factor 2 on the RHS of (8.88) replaced

successively by 4, = 3 and A3 = —6, gives two further normalised eigenvectors

1 1
— 1 -1 1", == -1 =2)". «

3 NG

In the above example, the three values of A are all different and A is a
real symmetric matrix. Thus we expect, and it is easily checked, that the three
eigenvectors are mutually orthogonal, i.e.

(xl)sz = (xl)Tx3 = (XZ)TX3 =0.

It will be apparent also that, as expected, the normalisation of the eigenvectors
has no effect on their orthogonality.

x!' =

X2=

8.14.1 Degenerate eigenvalues

We return now to the case of degenerate eigenvalues, i.e. those that have two or
more associated eigenvectors. We have shown already that it is always possible
to construct an orthogonal set of eigenvectors for a normal matrix, see subsec-
tion 8.13.1, and the following example illustrates one method for constructing
such a set.
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» Construct an orthonormal set of eigenvectors for the matrix

1 0 3
A= 0 -2 0
3 0 1

We first determine the eigenvalues using |A — Al| = 0:

1—-2 0 3
0=| 0 22— 0 |=—(1=XM’Q+2)+303)2+2
3 0 1—2
=@ =) +2)>%
Thus /; = 4, 2y = —2 = 3. The eigenvector x' = (x; x» x3)7 is found from
1 0 3 X1 X1 1 1
0 -2 0 x2 | =4 x2 = Xl = _—
3 0 1 X3 X3 \/z 1
A general column vector that is orthogonal to x' is
x=@ b —a)T, (8.89)
and it is easily shown that
1 0 3 a a
Ax=( 0 =2 0 b =-2 b = —2x.
3 0 1 —a —a

Thus x is a eigenvector of A with associated eigenvalue —2. It is clear, however, that there
is an infinite set of eigenvectors x all possessing the required property; the geometrical
analogue is that there are an infinite number of corresponding vectors x lying in the
plane that has x!' as its normal. We do require that the two remaining eigenvectors are
orthogonal to one another, but this still leaves an infinite number of possibilities. For x2,
therefore, let us choose a simple form of (8.89), suitably normalised, say,

xX=0 1 0T

The third eigenvector is then specified (to within an arbitrary multiplicative constant)
by the requirement that it must be orthogonal to x! and x?; thus x> may be found by
evaluating the vector product of x' and x> and normalising the result. This gives

X} = i(—1 0 1t

NG

to complete the construction of an orthonormal set of eigenvectors. <

8.15 Change of basis and similarity transformations

Throughout this chapter we have considered the vector x as a geometrical quantity
that is independent of any basis (or coordinate system). If we introduce a basis
e, i=1,2,...,N, into our N-dimensional vector space then we may write

X = X1€; + X2€2 + - -+ + Xnen,
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and represent x in this basis by the column matrix

X=(x; Xz --- Xn)Ta

having components x;. We now consider how these components change as a result
of a prescribed change of basis. Let us introduce a new basis e}, i = 1,2,..., N,
which is related to the old basis by

N
€ => Sie, (8.90)
i=1

the coefficient S;; being the ith component of €]

basis. For an arbitrary vector x it follows that

N N N N
X = E Xi€ = E X}E; = E X”- E S,~je,-.
i=1 Jj=1 Jj=1 i=1

From this we derive the relationship between the components of x in the two
coordinate systems as

with respect to the old (unprimed)

N
X = Z Sin;,
j=1
which we can write in matrix form as
x = Sx’ (8.91)

where S is the transformation matrix associated with the change of basis.
Furthermore, since the vectors e;- are linearly independent, the matrix S is
non-singular and so possesses an inverse S~!. Multiplying (8.91) on the left by

S~! we find
x =87 !x, (8.92)

which relates the components of x in the new basis to those in the old basis.
Comparing (8.92) and (8.90) we note that the components of x transform inversely
to the way in which the basis vectors e; themselves transform. This has to be so,
as the vector x itself must remain unchanged.

We may also find the transformation law for the components of a linear
operator under the same change of basis. Now, the operator equation y = Ax
(which is basis independent) can be written as a matrix equation in each of the
two bases as

y=Ax, y =AX. (8.93)
But, using (8.91), we may rewrite the first equation as
Sy =ASxX = y =S"'ASx.
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Comparing this with the second equation in (8.93) we find that the components
of the linear operator A transform as

A =S~IAS. (8.94)

Equation (8.94) is an example of a similarity transformation — a transformation
that can be particularly useful in converting matrices into convenient forms for
computation.

Given a square matrix A, we may interpret it as representing a linear operator
A in a given basis e;.. From (8.94), however, we may also consider the matrix
A" = S7IAS, for any non-singular matrix S, as representing the same linear
operator A but in a new basis e}, related to the old basis by

4 2 :
ej = S,-je,-.
i

Therefore we would expect that any property of the matrix A that represents
some (basis-independent) property of the linear operator A will also be shared
by the matrix A’. We list these properties below.

(1) If A =1 then A’ = I, since, from (8.94),
A =slIs=s!s=1 (8.95)
(ii)) The value of the determinant is unchanged:
|A'| = |ST'AS| = [ST'[|AlIS| = |AlIST'IS| = |AIST'S| = |Al.  (8.96)

(iii) The characteristic determinant and hence the eigenvalues of A’ are the
same as those of A: from (8.86),

|A— Al = |ST'AS — JI| = |STH(A — AI)S]
= |S7H|S||A — Al = |A = Al|. (8.97)

(iv) The value of the trace is unchanged: from (8.87),
T = 34— 5T S
i ij ok
=22 SulSydn =33 Joudn =) Ay
ij ok j ok J
=TrA. (8.98)
An important class of similarity transformations is that for which S is a uni-
tary matrix; in this case A’ = S~!AS = STAS. Unitary transformation matrices
are particularly important, for the following reason. If the original basis e; is
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orthonormal and the transformation matrix S is unitary then
<e:‘65> = <Z Ski€x ‘Z S,..,-e,.>
k r
= Z Sk Z Syj{exler)
k r
= Z Si Z Sri0kr = Z SiiSkj = (878);; = &4,
k r k

showing that the new basis is also orthonormal.
Furthermore, in addition to the properties of general similarity transformations,
for unitary transformations the following hold.

(i) If A is Hermitian (anti-Hermitian) then A’ is Hermitian (anti-Hermitian),
ie. if AT = +A then

(A = (sTAS)" = sTATS = +8TAS = +A". (8.99)
(ii) If A is unitary (so that A" = A~') then A’ is unitary, since

(AYTA" = (STAS)T(STAS) = STATSSTAS = STATAS
=sfis=1. (8.100)

8.16 Diagonalisation of matrices

Suppose that a linear operator A is represented in some basis e, i = 1,2,..., N,
by the matrix A. Consider a new basis x/ given by

N
X/ = Z Sijeis
i=1
where the x/ are chosen to be the eigenvectors of the linear operator A, ie.
Ax) = x. (8.101)

In the new basis, A is represented by the matrix A’ = S~!AS, which has a
particularly simple form, as we shall see shortly. The element S;; of S is the ith
component, in the old (unprimed) basis, of the jth eigenvector x/ of A, ie. the
columns of S are the eigenvectors of the matrix A:

T 7
s=[ x! x? xN |,
ol !
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that is, S;; = (x/);. Therefore A’ is given by

S~IAS); Z Z Vi AriSij
= Z Z DA (<)),
= Z(S_ e A (7 )i
X

= Z 287 Skj = 4;dyj.
k

So the matrix A’ is diagonal with the eigenvalues of A as the diagonal elements,
ie.

i 0 - 0
O

: 0

0 --- 0 Iy

Therefore, given a matrix A, if we construct the matrix S that has the eigen-
vectors of A as its columns then the matrix A’ = S~'AS is diagonal and has the
eigenvalues of A as its diagonal elements. Since we require S to be non-singular
(IS| # 0), the N eigenvectors of A must be linearly independent and form a basis
for the N-dimensional vector space. It may be shown that any matrix with distinct
eigenvalues can be diagonalised by this procedure. If, however, a general square
matrix has degenerate eigenvalues then it may, or may not, have N linearly
independent eigenvectors. If it does not then it cannot be diagonalised.

For normal matrices (which include Hermitian, anti-Hermitian and unitary
matrices) the N eigenvectors are indeed linearly independent. Moreover, when
normalised, these eigenvectors form an orthonormal set (or can be made to do
so). Therefore the matrix S with these normalised eigenvectors as columns, i.e.
whose elements are S;; = (x/);, has the property

(8'8); =Y (8Nl = D Sy = D (xR = (x) '/ = 0y,

k k k
Hence S is unitary (57! = ST) and the original matrix A can be diagonalised by
A =S7'As =s'As.

Therefore, any normal matrix A can be diagonalised by a similarity transformation
using a unitary transformation matrix S.
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» Diagonalise the matrix

1 0 3
A= 0 -2 0
30 1

The matrix A is symmetric and so may be diagonalised by a transformation of the form
A’ = STAS, where S has the normalised eigenvectors of A as its columns. We have already
found these eigenvectors in subsection 8.14.1, and so we can write straightaway

1 —1

1 0
s=—|[ o0 2
V21 o
We note that although the eigenvalues of A are degenerate, its three eigenvectors are
linearly independent and so A can still be diagonalised. Thus, calculating STAS we obtain

0
1

f 10t 1 0 3 1 0o -1
sfas=_( 0o 2 0 0 -2 0 0 2 0
R W T 30 1 10 1
4 0 0
={o —2 o |,
0 0 -2

which is diagonal, as required, and has as its diagonal elements the eigenvalues of A. «

If a matrix A is diagonalised by the similarity transformation A’ = S~!AS, so
that A" = diag(41, 42, ..., An), then we have immediately

N
TrA =TrA=>Y 7 (8.102)
i=1
N
A=Al =] % (8.103)
i=1

since the eigenvalues of the matrix are unchanged by the transformation. More-
over, these results may be used to prove the rather useful trace formula

exp Al =exp(Tr A), (8.104)

where the exponential of a matrix is as defined in (8.38).

» Prove the trace formula (8.104). |

At the outset, we note that for the similarity transformation A’ = S~'AS, we have
(A)" = (S"'AS)(S'AS)- - - (S~!AS) = S'A"S.
Thus, from (8.38), we obtain exp A’ = S~!(exp A)S, from which it follows that |exp A'| =
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|exp A|. Moreover, by choosing the similarity transformation so that it diagonalises A, we
have A" = diag(41, 5. .., An), and so

.
lexp Al =|exp A'| = | exp[diag(i1, /2., Ax)]| = |diag(exp A1, exp Aa....,exp Ay)| = [ [ exp .
i=1

Rewriting the final product of exponentials of the eigenvalues as the exponential of the
sum of the eigenvalues, we find

N N
lexp Al = H exp A = exp (Z Z,») =exp(Tr A),
i=1 i=1

which gives the trace formula (8.104). «

8.17 Quadratic and Hermitian forms

Let us now introduce the concept of quadratic forms (and their complex ana-
logues, Hermitian forms). A quadratic form Q is a scalar function of a real vector
X given by

0(x) = (x|Ax), (8.105)

for some real linear operator A. In any given basis (coordinate system) we can
write (8.105) in matrix form as

0(x) = xTAx, (8.106)

where A is a real matrix. In fact, as will be explained below, we need only consider
the case where A is symmetric, i.e. A = AT. As an example in a three-dimensional
space,

1 1 3 X1
0 =xTAx = <x1 X2 X3> 1 1 =3 X
3 -3 -3 X3

= x% + x% — 3x§ 4+ 2x1x3 + 6x1x3 — 6X2X3. (8.107)

It is reasonable to ask whether a quadratic form Q = xTMx, where M is any
(possibly non-symmetric) real square matrix, is a more general definition. That
this is not the case may be seen by expressing M in terms of a symmetric matrix

A= %(M +MT) and an antisymmetric matrix B = %(M —MT) such that M = A+4-B.

We then have
0 = x"™Mx = xTAx 4+ xTBx. (8.108)
However, Q is a scalar quantity and so

0= QT = (XTAX)T + (XTBX)T =xTATx + xTBTx = xTAx — x"Bx.
(8.109)

Comparing (8.108) and (8.109) shows that xTBx = 0, and hence x"Mx = xTAx,
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i.e. Q is unchanged by considering only the symmetric part of M. Hence, with no
loss of generality, we may assume A = AT in (8.106).

From its definition (8.105), Q is clearly a basis- (i.e. coordinate-) independent
quantity. Let us therefore consider a new basis related to the old one by an
orthogonal transformation matrix S, the components in the two bases of any
vector x being related (as in (8.91)) by x = Sx’ or, equivalently, by X' = S~Ix =
STx. We then have

0 = xTAx = (x)TsTAasx = (X)TA'X,

where (as expected) the matrix describing the linear operator A in the new
basis is given by A’ = STAS (since ST = S~!). But, from the last section, if we
choose as S the matrix whose columns are the normalised eigenvectors of A then
A’ = STAS is diagonal with the eigenvalues of A as the diagonal elements. (Since
A is symmetric, its normalised eigenvectors are orthogonal, or can be made so,
and hence S is orthogonal with S~! = 8T

In the new basis

0 =x"Ax = (X)TAX = 11X} + Joxy + -+ + Anxy’, (8.110)

where A = diag(4,/2,...,4y) and the A; are the eigenvalues of A. It should be
noted that Q contains no cross-terms of the form x/x}.

» Find an orthogonal transformation that takes the quadratic form (8.107) into the form

2, 2 2
Xy 4 Aaxhy” + A3xy.

The required transformation matrix S has the normalised eigenvectors of A as its columns.
We have already found these in section 8.14, and so we can write immediately

LB
S=— 3 -2 -1 1,
N S

which is easily verified as being orthogonal. Since the eigenvalues of A are 4 = 2, 3, and
—6, the general result already proved shows that the transformation x = Sx’ will carry
(8.107) into the form 2x)* + 3x,” — 6x}”. This may be verified most easily by writing out
the inverse transformation X' = S~'x = STx and substituting. The inverse equations are

Xi = (x1+x)//2,
Xy = (x1 — x2 + x3)/~/3, (8.111)
Xy = (X1 — X2 — 2x3)/~/6.

If these are substituted into the form Q = 2x,? 4 3x,% — 6x” then the original expression
(8.107) is recovered. <«

In the definition of Q it was assumed that the components x;, x5, x3 and the
matrix A were real. It is clear that in this case the quadratic form Q = xTAx is real
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also. Another, rather more general, expression that is also real is the Hermitian
form

H(x) = x"Ax, (8.112)

where A is Hermitian (i.e. AT = A) and the components of x may now be complex.
It is straightforward to show that H is real, since

H' =H" =x'Afx = x'Ax = H.

With suitable generalisation, the properties of quadratic forms apply also to Her-
mitian forms, but to keep the presentation simple we will restrict our discussion
to quadratic forms.

A special case of a quadratic (Hermitian) form is one for which Q = xTAx
is greater than zero for all column matrices x. By choosing as the basis the
eigenvectors of A we have Q in the form

Q = /AL]X% =+ )ng + )~3X§.

The requirement that Q > 0 for all x means that all the eigenvalues /; of A must
be positive. A symmetric (Hermitian) matrix A with this property is called positive
definite. If, instead, Q > O for all x then it is possible that some of the eigenvalues
are zero, and A is called positive semi-definite.

8.17.1 The stationary properties of the eigenvectors

Consider a quadratic form, such as Q(x) = (x|.Ax), equation (8.105), in a fixed
basis. As the vector x is varied, through changes in its three components x;, x;
and x3, the value of the quantity Q also varies. Because of the homogeneous
form of Q we may restrict any investigation of these variations to vectors of unit
length (since multiplying any vector x by any scalar k simply multiplies the value
of Q by a factor k?).

Of particular interest are any vectors x that make the value of the quadratic
form a maximum or minimum. A necessary, but not sufficient, condition for this
is that Q is stationary with respect to small variations Ax in x, whilst (x|x) is
maintained at a constant value (unity).

In the chosen basis the quadratic form is given by Q = xTAx and, using
Lagrange undetermined multipliers to incorporate the variational constraints, we
are led to seek solutions of

AIXTAX — A(xTx — 1)] = 0. (8.113)

This may be used directly, together with the fact that (AxT)Ax = xTA Ax, since A
is symmetric, to obtain

Ax = Ix (8.114)
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as the necessary condition that x must satisfy. If (8.114) is satisfied for some
eigenvector x then the value of Q(x) is given by

0=x"Ax=xTix= A (8.115)

However, if x and y are eigenvectors corresponding to different eigenvalues then
they are (or can be chosen to be) orthogonal. Consequently the expression yTAx
is necessarily zero, since

yIAx =yTix = lyTx = 0. (8.116)

Summarising, those column matrices x of unit magnitude that make the
quadratic form Q stationary are eigenvectors of the matrix A, and the stationary
value of Q is then equal to the corresponding eigenvalue. It is straightforward
to see from the proof of (8.114) that, conversely, any eigenvector of A makes Q
stationary.

Instead of maximising or minimising Q = xTAx subject to the constraint
xTx = 1, an equivalent procedure is to extremise the function

xTAx

Ax) = xTx

»Show that if A(x) is stationary then x is an eigenvector of A and A(X) is equal to the
corresponding eigenvalue.

We require AA(x) = 0 with respect to small variations in x. Now

Al = L [(x"x) (AXTAx 4+ x"A Ax) — xTAx (AxTx + xTAx)]

(xTx)?
_ 2AxTAx _, xTAX\ AxTx
T xTx xTx xTx ’

since x"A Ax = (Ax")Ax and x"Ax = (Ax")x. Thus
Al = 2 AXT[AX — A(x)x]
= ) .
Hence, if AZ =0 then Ax = A(x)x, ie. x is an eigenvector of A with eigenvalue A(x). <
Thus the eigenvalues of a symmetric matrix A are the values of the function

xTAx

Ax) = xTx

at its stationary points. The eigenvectors of A lie along those directions in space
for which the quadratic form Q = xTAx has stationary values, given a fixed
magnitude for the vector x. Similar results hold for Hermitian matrices.
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8.17.2 Quadratic surfaces

The results of the previous subsection may be turned round to state that the
surface given by

xTAx = constant = 1 (say) (8.117)

and called a quadratic surface, has stationary values of its radius (ie. origin—
surface distance) in those directions that are along the eigenvectors of A. More
specifically, in three dimensions the quadratic surface x'Ax = 1 has its principal
axes along the three mutually perpendicular eigenvectors of A, and the squares
of the corresponding principal radii are given by i7!, i = 1,2,3. As well as
having this stationary property of the radius, a principal axis is characterised by
the fact that any section of the surface perpendicular to it has some degree of
symmetry about it. If the eigenvalues corresponding to any two principal axes are
degenerate then the quadratic surface has rotational symmetry about the third
principal axis and the choice of a pair of axes perpendicular to that axis is not
uniquely defined.

» Find the shape of the quadratic surface

x% + x% — 3x§ + 2x1X2 + 6x1Xx3 — 6x3x3 = 1.

If, instead of expressing the quadratic surface in terms of xj, x, x3, as in (8.107), we
were to use the new variables x|, x5, x} defined in (8.111), for which the coordinate axes
are along the three mutually perpendicular eigenvector directions (1,1,0), (1,—1,1) and
(1,—1,—-2), then the equation of the surface would take the form (see (8.110))

’2 /2 /2
b X5 X3

+ - =1
(1/52?2 (/B2 /6y
Thus, for example, a section of the quadratic surface in the plane xj = 0, i.e. x; —x; —

2x3 = 0, is an ellipse, with semi-axes 1/4/2 and 1/./3. Similarly a section in the plane
X{ = x1 + x, =0 is a hyperbola. «

Clearly the simplest three-dimensional situation to visualise is that in which all
the eigenvalues are positive, since then the quadratic surface is an ellipsoid.

8.18 Simultaneous linear equations

In physical applications we often encounter sets of simultaneous linear equations.
In general we may have M equations in N unknowns xi, x2,...,xy of the form

Anxi +Apxy + -+ Ainxy = by,

A21x1 + Anxy + - - - + Aoanxy = by,
(8.118)

Amixi + Aypxza + -+ Aunxn = by,
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where the 4;; and b; have known values. If all the b; are zero then the system of
equations is called homogeneous, otherwise it is inhomogeneous. Depending on the
given values, this set of equations for the N unknowns xi, x», ..., xy may have
either a unique solution, no solution or infinitely many solutions. Matrix analysis
may be used to distinguish between the possibilities. The set of equations may be
expressed as a single matrix equation Ax = b, or, written out in full, as

b
A A ... AN X1 !
A21 Azz A2N X2 b2
A1 Am2 ... Amn XN b

M

8.18.1 The range and null space of a matrix

As we discussed in section 8.2, we may interpret the matrix equation Ax = b as
representing, in some basis, the linear transformation .4 x = b of a vector x in an
N-dimensional vector space V' into a vector b in some other (in general different)
M-dimensional vector space W.

In general the operator A will map any vector in V into some particular
subspace of W, which may be the entire space. This subspace is called the range
of A (or A) and its dimension is equal to the rank of A. Moreover, if A (and
hence A) is singular then there exists some subspace of V' that is mapped onto
the zero vector 0 in W that is, any vector y that lies in the subspace satisfies
Ay = 0. This subspace is called the null space of A and the dimension of this
null space is called the nullity of A. We note that the matrix A must be singular
if M # N and may be singular even if M = N.

The dimensions of the range and the null space of a matrix are related through
the fundamental relationship

rank A + nullity A = N, (8.119)

where N is the number of original unknowns xg, xs,..., Xy.

» Prove the relationship (8.119). |

As discussed in section 8.11, if the columns of an M x N matrix A are interpreted as the
components, in a given basis, of N (M-component) vectors vi,vy,...,Vy then rank A is
equal to the number of linearly independent vectors in this set (this number is also equal
to the dimension of the vector space spanned by these vectors). Writing (8.118) in terms
of the vectors vy, va,...,Vy, we have

X1Vi + XoV + - 4+ XNVN =bh. (8120)
From this expression, we immediately deduce that the range of A is merely the span of

the vectors vy, vs,...,vy and hence has dimension r = rank A.
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If a vector y lies in the null space of A then Ay = 0, which we may write as
yivi+yva+ -+ ynvy = 0. (8.121)

As just shown above, however, only r (< N) of these vectors are linearly independent. By
renumbering, if necessary, we may assume that vi,v,,...,v. form a linearly independent
set; the remaining vectors, V,4,V,42,...,Vy, can then be written as a linear superposition
of vi,vy,...,v,. We are therefore free to choose the N — r coefficients y,.1, Vri2,---» VN
arbitrarily and (8.121) will still be satisfied for some set of r coefficients y1, y»,..., y, (Which
are not all zero). The dimension of the null space is therefore N —r, and this completes
the proof of (8.119). «

Equation (8.119) has far-reaching consequences for the existence of solutions
to sets of simultaneous linear equations such as (8.118). As mentioned previously,
these equations may have no solution, a unique solution or infinitely many solutions.
We now discuss these three cases in turn.

No solution

The system of equations possesses no solution unless b lies in the range of A ; in
this case (8.120) will be satisfied for some xy, x2,...,xy. This in turn requires the
set of vectors b, vy, vs,...,vy to have the same span (see (8.8)) as vi,va,...,vy. In
terms of matrices, this is equivalent to the requirement that the matrix A and the
augmented matrix

At A12 AlN bl

Arq A22 AZN bl
M=

Ay Ayp ... Ann bM

have the same rank r. If this condition is satisfied then b does lie in the range of
A, and the set of equations (8.118) will have either a unique solution or infinitely
many solutions. If, however, A and M have different ranks then there will be no
solution.

A unique solution

If b lies in the range of A and if r = N then all the vectors vy, v,,...,vy in (8.120)
are linearly independent and the equation has a unique solution x1,x3,...,Xy.

Infinitely many solutions

If b lies in the range of A and if r < N then only r of the vectors vi,v,,..., vy
in (8.120) are linearly independent. We may therefore choose the coefficients of
n — r vectors in an arbitrary way, while still satisfying (8.120) for some set of
coefficients xy, X», ..., xy. There are therefore infinitely many solutions, which span
an (n—r)-dimensional vector space. We may also consider this space of solutions
in terms of the null space of A: if x is some vector satisfying Ax = b and y is
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any vector in the null space of A (ie. Ay = 0) then
Ax+y)=Ax+ Ay=Ax+0=h,

and so x 4y is also a solution. Since the null space is (n — r)-dimensional, so too
is the space of solutions.

We may use the above results to investigate the special case of the solution of
a homogeneous set of linear equations, for which b = 0. Clearly the set always has
the trivial solution x; = x; = -+ = x,, = 0, and if r = N this will be the only
solution. If r < N, however, there are infinitely many solutions; they form the
null space of A, which has dimension n — r. In particular, we note that if M < N
(i.e. there are fewer equations than unknowns) then r < N automatically. Hence a
set of homogeneous linear equations with fewer equations than unknowns always
has infinitely many solutions.

8.18.2 N simultaneous linear equations in N unknowns

A special case of (8.118) occurs when M = N. In this case the matrix A is square
and we have the same number of equations as unknowns. Since A is square, the
condition r = N corresponds to |A| # 0 and the matrix A is non-singular. The
case r < N corresponds to |A| = 0, in which case A is singular.

As mentioned above, the equations will have a solution provided b lies in the
range of A. If this is true then the equations will possess a unique solution when
|A] # 0 or infinitely many solutions when |A| = 0. There exist several methods
for obtaining the solution(s). Perhaps the most elementary method is Gaussian
elimination; this method is discussed in subsection 27.3.1, where we also address
numerical subtleties such as equation interchange (pivoting). In this subsection,
we will outline three further methods for solving a square set of simultaneous
linear equations.

Direct inversion

Since A is square it will possess an inverse, provided |A| # 0. Thus, if A is
non-singular, we immediately obtain

x=A"'b (8.122)

as the unique solution to the set of equations. However, if b = 0 then we see
immediately that the set of equations possesses only the trivial solution x = 0. The
direct inversion method has the advantage that, once A~' has been calculated,
one may obtain the solutions x corresponding to different vectors by, by, ... on
the RHS, with little further work.
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» Show that the set of simultaneous equations
2x1 +4x; + 3x3 =4,
X1 —2x; —2x3 =0, (8.123)
—3x1 +3x; +2x3 =7,

has a unique solution, and find that solution.

The simultaneous equations can be represented by the matrix equation Ax = b, i.e.

2 4 3 X1 4
1 -2 -2 xw |=[ o |].
3 3 2 X3 -7

As we have already shown that A~! exists and have calculated it, see (8.59), it follows that
x = A~'b or, more explicitly, that

X1 2 1 -2 4 2
X | = 4 13 7 0 = -3 ]. (8.124)
X3 -3 —18 -8 -7 4

Thus the unique solution is x; =2, x, = =3, x; = 4. «

—_
=l

LU decomposition

Although conceptually simple, finding the solution by calculating A~! can be
computationally demanding, especially when N is large. In fact, as we shall now
show, it is not necessary to perform the full inversion of A in order to solve the
simultaneous equations Ax = b. Rather, we can perform a decomposition of the
matrix into the product of a square lower triangular matrix L and a square upper
triangular matrix U, which are such that

A=LU, (8.125)

and then use the fact that triangular systems of equations can be solved very
simply.

We must begin, therefore, by finding the matrices L and U such that (8.125)
is satisfied. This may be achieved straightforwardly by writing out (8.125) in
component form. For illustration, let us consider the 3 x 3 case. It is, in fact,
always possible, and convenient, to take the diagonal elements of L as unity, so
we have

1 0 0 U11 U12 U13
A= Ly; 1 0 0 Uy Up
Un Un Uiz
=| LuyUy LyUp+Uxn LUz + Uss (8.126)

L31Uy L3iUpp + L3 Usy LUz + L3 Uss + Uss

The nine unknown elements of L and U can now be determined by equating
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the nine elements of (8.126) to those of the 3 x 3 matrix A. This is done in the
particular order illustrated in the example below.

Once the matrices L and U have been determined, one can use the decomposition
to solve the set of equations Ax = b in the following way. From (8.125), we have
LUx = b, but this can be written as two triangular sets of equations

Ly=»b and Ux =y,

where y is another column matrix to be determined. One may easily solve the first
triangular set of equations for y, which is then substituted into the second set.
The required solution x is then obtained readily from the second triangular set
of equations. We note that, as with direct inversion, once the LU decomposition
has been determined, one can solve for various RHS column matrices by, by, ...,
with little extra work.

| »Use LU decomposition to solve the set of simultaneous equations (8.123).

We begin the determination of the matrices L and U by equating the elements of the
matrix in (8.126) with those of the matrix

2 4 3
A= 1 -2 =2
-3 3 2
This is performed in the following order:
1st row: Uy =2, Up =4, U =3
Ist column: Ly Uy =1, LU ==3 = L, = %, Ly = _%
2nd row: LyyUp+Up=-2 LyUp 4+ Uy =-2 =Up=—4 Uy=—-}
2nd column: L3 Uy + L3 Uy =3 =Ly=—9
3rd row: L31Ups + L3y Uy + Us; =2 = U33=—%
Thus we may write the matrix A as
1 0 0 2 4 3
A=LU= i1 0 0 —4 -1
3 9 1
-3 —1 1 o0 -%
We must now solve the set of equations Ly = b, which read
1 0 0 V1 4
% 1 0 » = 0
-3 -3 1 Vs =7

Since this set of equations is triangular, we quickly find
yi=4 2 =0-()# =2 ys=-T— (=)@ (P2 =4
These values must then be substituted into the equations Ux =y, which read

2 4 3 X1 4
0 —4 I 2w | =] =2
o o -4 X3 -4
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This set of equations is also triangular, and we easily find the solution
X1=2, xx=-3, x3=4

which agrees with the result found above by direct inversion. <«

We note, in passing, that one can calculate both the inverse and the determinant
of A from its LU decomposition. To find the inverse A~!, one solves the system
of equations Ax = b repeatedly for the N different RHS column matrices b = e;,
i=1,2,...,N, where e; is the column matrix with its ith element equal to unity
and the others equal to zero. The solution x in each case gives the corresponding
column of A~!. Evaluation of the determinant |A| is much simpler. From (8.125),
we have

|A] = |LU| = |L|U]. (8.127)
Since L and U are triangular, however, we see from (8.64) that their determinants
are equal to the products of their diagonal elements. Since L; = 1 for all i, we
thus find

N
|Al=UUp---Uyn = H Uii.
i—1

As an illustration, in the above example we find |A| = (2)(—4)(—11/8) = 11,
which, as it must, agrees with our earlier calculation (8.58).

Finally, we note that if the matrix A is symmetric and positive semi-definite
then we can decompose it as

A =LL, (8.128)

where L is a lower triangular matrix whose diagonal elements are not, in general,
equal to unity. This is known as a Cholesky decomposition (in the special case
where A is real, the decomposition becomes A = LLT). The reason that we cannot
set the diagonal elements of L equal to unity in this case is that we require the
same number of independent elements in L as in A. The requirement that the
matrix be positive semi-definite is easily derived by considering the Hermitian
form (or quadratic form in the real case)

x'Ax = x"LLTx = (LTx)(LTx).

Denoting the column matrix LTx by y, we see that the last term on the RHS
is y'y, which must be greater than or equal to zero. Thus, we require x'Ax > 0
for any arbitrary column matrix x, and so A must be positive semi-definite (see
section 8.17).

We recall that the requirement that a matrix be positive semi-definite is equiv-
alent to demanding that all the eigenvalues of A are positive or zero. If one of
the eigenvalues of A is zero, however, then from (8.103) we have |A| = 0 and so A
is singular. Thus, if A is a non-singular matrix, it must be positive definite (rather
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than just positive semi-definite) in order to perform the Cholesky decomposition
(8.128). In fact, in this case, the inability to find a matrix L that satisfies (8.128)
implies that A cannot be positive definite.

The Cholesky decomposition can be applied in an analogous way to the LU
decomposition discussed above, but we shall not explore it further.

Cramer’s rule

An alternative method of solution is to use Cramer’s rule, which also provides
some insight into the nature of the solutions in the various cases. To illustrate
this method let us consider a set of three equations in three unknowns,

Anxy + Appxa + Ai3xs = by,
Az X1 + Anxs + Azzxz = by, (8.129)
A31x1 + Azxz + Azzxs = bs,
which may be represented by the matrix equation Ax = b. We wish either to find
the solution(s) x to these equations or to establish that there are no solutions.

From result (vi) of subsection 8.9.1, the determinant |A| is unchanged by adding
to its first column the combination

;‘% x (second column of |A|) 4 % X (third column of |A|).
1 1

We thus obtain

A A An A+ (x2/x1)An + (x3/x1)A1s A A
[Al=| A1 Ay Az | =| A+ (x2/x1)A0n + (x3/Xx1)A23 An Az |,
A1 An Axn A3y + (x2/x1)A3 + (x3/x1)A33 A3z A3z
which, on substituting b;/x; for the ith entry in the first column, yields
1 by Ap A 1
\A|=x— by Ay Axn =X—A1-
"by Ay As !

The determinant A; is known as a Cramer determinant. Similar manipulations of
the second and third columns of |A| yield x; and x3, and so the full set of results
reads

Ay Ay Az
X|1=—, Xp=-—, X3=—), (8.130)
" A] A] A]
where
by A Az A by A Ay Ap b
Ai=| by Ayp Ayp |, Ay=| Ay by Ay |, A3=| Ay An b
by Az As A3 by Az A3 Az bs

It can be seen that each Cramer determinant A; is simply |A| but with column i
replaced by the RHS of the original set of equations. If |A| # 0 then (8.130) gives
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the unique solution. The proof given here appears to fail if any of the solutions
X; is zero, but it can be shown that result (8.130) is valid even in such a case.

» Use Cramer’s rule to solve the set of simultaneous equations (8.123).

Let us again represent these simultaneous equations by the matrix equation Ax = b, i.e.

2 4 3 X1 4
1 -2 =2 X | = 0 .
-3 3 2 X3 =7

From (8.58), the determinant of A is given by |A| = 11. Following the discussion given
above, the three Cramer determinants are

4 4 3 2 4 3 2 4 4
A= 0 =2 =21, A=]|1 0 2|, A= 1 =2 0
-7 3 2 -3 =7 2 -3 3 -7

These may be evaluated using the properties of determinants listed in subsection 8.9.1
and we find A; = 22, A, = —33 and A; = 44. From (8.130) the solution to the equations
(8.123) is given by

22 -33 3 ’C_44_
T n- T
which agrees with the solution found in the previous example. <«

X1 Xy = 4,

At this point it is useful to consider each of the three equations (8.129) as rep-
resenting a plane in three-dimensional Cartesian coordinates. Using result (7.42)
of chapter 7, the sets of components of the vectors normal to the planes are
(A11, Alg, A13), (A21, A22, A23) and (A31, A32, A33), and using (746) the perpendic-
ular distances of the planes from the origin are given by

d; = b gy fori=1,23.
(A7 + A3 + A7)

Finding the solution(s) to the simultaneous equations above corresponds to finding
the point(s) of intersection of the planes.

If there is a unique solution the planes intersect at only a single point. This
happens if their normals are linearly independent vectors. Since the rows of A
represent the directions of these normals, this requirement is equivalent to |A| # 0.
Ifb=(0 0 0)T =0 then all the planes pass through the origin and, since there
is only a single solution to the equations, the origin is that solution.

Let us now turn to the cases where |A| = 0. The simplest such case is that in
which all three planes are parallel; this implies that the normals are all parallel
and so A is of rank 1. Two possibilities exist:

(i) the planes are coincident, i.e. dy = d» = d3, in which case there is an
infinity of solutions;

(ii) the planes are not all coincident, ie. di # d, and/or d; # d; and/or
dy # dj, in which case there are no solutions.

300



8.18 SIMULTANEOUS LINEAR EQUATIONS

(a) (b)

Figure 8.1 The two possible cases when A is of rank 2. In both cases all the
normals lie in a horizontal plane but in (a) the planes all intersect on a single
line (corresponding to an infinite number of solutions) whilst in (b) there are
no common intersection points (no solutions).

It is apparent from (8.130) that case (i) occurs when all the Cramer determinants
are zero and case (ii) occurs when at least one Cramer determinant is non-zero.

The most complicated cases with |A| = 0 are those in which the normals to the
planes themselves lie in a plane but are not parallel. In this case A has rank 2.
Again two possibilities exist and these are shown in figure 8.1. Just as in the
rank-1 case, if all the Cramer determinants are zero then we get an infinity of
solutions (this time on a line). Of course, in the special case in which b =0 (and
the system of equations is homogeneous), the planes all pass through the origin
and so they must intersect on a line through it. If at least one of the Cramer
determinants is non-zero, we get no solution.

These rules may be summarised as follows.

(1) |A| # 0, b # 0: The three planes intersect at a single point that is not the
origin, and so there is only one solution, given by both (8.122) and (8.130).

(ii) |A| # 0, b = 0: The three planes intersect at the origin only and there is
only the trivial solution, x = 0.

(iii) |A] = 0, b # 0, Cramer determinants all zero: There is an infinity of
solutions either on a line if A is rank 2, i.e. the cofactors are not all zero,
or on a plane if A is rank 1, i.e. the cofactors are all zero.

(iv) |A] =0, b # 0, Cramer determinants not all zero: No solutions.

(v) |A] =0, b = 0: The three planes intersect on a line through the origin
giving an infinity of solutions.

~

8.18.3 Singular value decomposition

There exists a very powerful technique for dealing with a simultaneous set of
linear equations Ax = b, such as (8.118), which may be applied whether or not
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the number of simultaneous equations M is equal to the number of unknowns N.
This technique is known as singular value decomposition (SVD) and is the method
of choice in analysing any set of simultaneous linear equations.

We will consider the general case, in which A is an M x N (complex) matrix.
Let us suppose we can write A as the product’

A =USV', (8.131)
where the matrices U, S and V have the following properties.

(i) The square matrix U has dimensions M x M and is unitary.

(i) The matrix S has dimensions M x N (the same dimensions as those of A)
and is diagonal in the sense that S;; = 0 if i # j. We denote its diagonal
elements by s; for i = 1,2,...,p, where p = min(M, N); these elements are
termed the singular values of A.

(iii) The square matrix V has dimensions N x N and is unitary.

We must now determine the elements of these matrices in terms of the elements of
A. From the matrix A, we can construct two square matrices: ATA with dimensions
N x N and AAT with dimensions M x M. Both are clearly Hermitian. From (8.131),
and using the fact that U and V are unitary, we find

AfA = vsfufusvt = vsfsyf (8.132)
AAT = usvivsTut = ussfu’, (8.133)

where STS and SS' are diagonal matrices with dimensions N x N and M x M
respectively. The first p elements of each diagonal matrix are siz, i=12...,p,
where p = min(M, N), and the rest (where they exist) are zero.

These two equations imply that both V-'ATAV (=V~'ATA(V)~!) and, by
a similar argument, U~'AATU, must be diagonal. From our discussion of the
diagonalisation of Hermitian matrices in section 8.16, we see that the columns of
V must therefore be the normalised eigenvectors v/, i = 1,2,..., N, of the matrix
ATA and the columns of U must be the normalised eigenvectors u/, j = 1,2,..., M,
of the matrix AAT. Moreover, the singular values s; must satisfy s? = Ji, where
the J; are the eigenvalues of the smaller of ATA and AAT. Clearly, the 2; are
also some of the eigenvalues of the larger of these two matrices, the remaining
ones being equal to zero. Since each matrix is Hermitian, the 4; are real and the
singular values s; may be taken as real and non-negative. Finally, to make the
decomposition (8.131) unique, it is customary to arrange the singular values in
decreasing order of their values, so that s; > s, > -+ > s,.

§ The proof that such a decomposition always exists is beyond the scope of this book. For a
full account of SVD one might consult, for example, G. H. Golub and C. F. Van Loan, Matrix
Computations, 3rd edn (Baltimore MD: Johns Hopkins University Press, 1996).
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»Show that, for i =1,2,...,p, AVl = s;u’ and ATu’ = s/, where p = min(M, N).

Post-multiplying both sides of (8.131) by V, and using the fact that V is unitary, we obtain
AV = US.
Since the columns of V and U consist of the vectors v and u/ respectively and S has only
diagonal non-zero elements, we find immediately that, for i = 1,2,...,p,
AV = s;u'. (8.134)
Moreover, we note that Avi =0 fori=p+1,p+2,...,N.

Taking the Hermitian conjugate of both sides of 8 131) and post-multiplying by U, we
obtain

ATU =vs' =vsT,
where we have used the fact that U is unitary and S is real. We then see immediately that,
fori=1,2,...,p,
Aful = s;v'. (8.135)

We also note that Afu = 0 fori = p+1,p+2,..., M. Results (8.134) and (8.135) are useful
for investigating the properties of the SVD. «

The decomposition (8.131) has some advantageous features for the analysis of
sets of simultaneous linear equations. These are best illustrated by writing the
decomposition (8.131) in terms of the vectors u’ and v’ as

p
A= Z siuf(vh)T,
i—1

where p = min(M, N). It may be, however, that some of the singular values s;
are zero, as a result of degeneracies in the set of M linear equations Ax = b.
Let us suppose that there are r non-zero singular values. Since our convention is
to arrange the singular values in order of decreasing size, the non-zero singular
values are s;, i = 1,2,...,r, and the zero singular values are s.ii,S-42,...,5).
Therefore we can write A as

.
A= sul(vi. (8.136)

i=1
Let us consider the action of (8.136) on an arbitrary vector x. This is given by

.
Ax = Z siu(vi)x.
i1

Since (v/)'x is just a number, we see immediately that the vectors u’, i =1,2,...,r,
must span the range of the matrix A; moreover, these vectors form an orthonor-
mal basis for the range. Further, since this subspace is r-dimensional, we have
rank A =r, i.e. the rank of A is equal to the number of non-zero singular values.

The SVD is also useful in characterising the null space of A. From (8.119),
we already know that the null space must have dimension N — r; so, if A has r
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non-zero singular values s;, i = 1,2,...,r, then from the worked example above
we have

AV =0 fori=r+1,r+2,...,N.

Thus, the N —r vectors Vi, i =r + 1,7 +2,..., N, form an orthonormal basis for
the null space of A.

» Find the singular value decompostion of the matrix
2 2 2 2
171 17 1
A=| ©© 10 ~1 i |- (8.137)
3 o 3 9
505 5 5

The matrix A has dimension 3 x 4 (ie. M = 3, N = 4), and so we may construct from

it the 3 x 3 matrix AA" and the 4 x 4 matrix ATA (in fact, since A is real, the Hermitian
conjugates are just transposes). We begin by finding the eigenvalues 4; and eigenvectors u’
of the smaller matrix AA'. This matrix is easily found to be given by

16 0 0
¥ ¥ 12
AR = 0% S
12
0o g ¥
and its characteristic equation reads
16—2 0 0
0 2, 2 = (16 —A)(36 — 134+ %) =0.
0 12 6,
5 5

Thus, the eigenvalues are 4; = 16, 4, =9, A3 = 4. Since the singular values of A are given
by si = \//T, and the matrix S in (8.131) has the same dimensions as A, we have

400 0
s=|0 30 0], (8.138)
0020

where we have arranged the singular values in order of decreasing size. Now the matrix U
has as its columns the normalised eigenvectors u’ of the 3 x 3 matrix AA'. These normalised
eigenvectors correspond to the eigenvalues of AA" as follows:

=16 = u'=@1 0 0T
J=9 - uz:(o 3 4)T

55
=4 = u=0 —% HT
and so we obtain the matrix
1 0 O
u=1| o % *% . (8.139)
N

The columns of the matrix V in (8.131) are the normalised eigenvectors of the 4 x 4
matrix A'A, which is given by

29 2 3 11
121 29 11 3

tA — =
AA=Z21 3 11 29 21

1 3 21 29
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We already know from the above discussion, however, that the non-zero eigenvalues of
this matrix are equal to those o